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Abstract
Based on the symmetric, asymmetric atom–photon couplings and the phase difference between
two separated atoms, single-photon transport properties in an optical waveguide coupled with
two separated two-level atoms are theoretically investigated. The transmission and reflection
amplitudes for the single-photon propagation in such a hybrid system are deduced via a
real-space approach. Several new phenomena such as phase-coupled induced transparency,
single-photon switches, symmetric and asymmetric bifrequency photon attenuators are
analyzed. In addition, the dissipation effect of such a hybrid system is also discussed.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past few years, controlling single-photon transport
properties in cavity quantum electrodynamics (CQED)
systems embedded with an atom or a quantum dot (QD) has
attracted much attention, due to its potential applications in
all-optical quantum information processing, optical quantum
computing, etc [1–24]. As a typical system, a one-dimensional
optical waveguide coupled with a two-level atom (TLA)
has been applied to manipulate a single-photon transmission
spectrum [25, 26]. In such a linear hybrid system, the incident
single-photon is completely reflected when on-resonant with
the transition frequency of the TLA, while the incident single
photon is completely transmitted when far-detuning (off-
resonant) from the atom transition frequency. In contrast to the
above linear one-dimensional waveguide–atom hybrid system,
Zhou et al proposed a nonlinear one-dimensional coupled-
resonator waveguide embedded with a TLA in one cavity
to study the coherent single-photon transport properties [27].
Their results demonstrated that the transmission and reflection
spectrum were beyond the usual Breit–Wigner and Fano line
shapes due to the nonlinear dispersion relation arising from

tight-binding intercavity couplings. Furthermore, asymmetric
atom–photon coupling was also proposed to control the
single-photon transmission spectrum [28], where the single-
photon transmission spectrum was well controlled by using
asymmetric atom–photon couplings, and an all-optical single-
frequency attenuator was also realized by control of the
asymmetric atom–photon coupling.

Recently, much attention has been focused on the
single-photon transmission spectrum in the system of a
waveguide coupled with two (or more) separated atoms
(or QDs) [29–34]. In such a multi-atom (or multi-QDs)
system, many new phenomena such as Fano-like lineshape
and electromagnetically induced transparency-like (EIT-like)
lineshape transmission spectrums have been found by tuning
the distance between these atoms. Most of the above studies
of the single-photon transmission spectrum in a multi-atom
system are just focused on the symmetric couplings between
the incident single photon and the TLAs (or QDs); however,
single-photon transport properties in such a multi-atom system
under asymmetric atom–photon couplings have not been fully
studied, which may lead to new physics on the coherent
transport of the single photon. In this paper, motivated
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Figure 1. Schematic of the hybrid optical system composed of an
optical waveguide coupled with two separated TLAs.

by the symmetric and especially the asymmetric atom–
photon couplings, the single-photon transmission properties
in an optical waveguide coupled with two separated atoms
are investigated in detail. Many new physical phenomena
such as phase-coupled induced transparency, single-photon
switches and symmetric and asymmetric bifrequency photon
attenuators are realized by controlling the symmetric and
asymmetric atom–photon couplings and the phase difference
induced by these two separated atoms.

2. Theoretical model

Figure 1 depicts a hybrid system composed of an optical
waveguide embedded with two separated TLAs (the distance
between these two separated atoms is L). By using the
linearization of photonic dispersion with a waveguide mode,
the effective Hamiltonian of the interaction between the
propagating photons and optical waveguide coupled with just
one TLA under the asymmetric atom–photon coupling can be
written as

Heff = H

�
= ivg

{∫
dxC+

L (x)
∂

∂x
CL(x) − C+

R (x)
∂

∂x
CR(x)

+g1δ(x)[C+
L (x)a+

g ae + CL(x)a+
e ag]

+g2δ(x)[C+
R (x)a+

g ae + CR(x)a+
e ag]

}
+ �a+

e ae, (1)

where vg is the group velocity of the single photon; C+
R (CR),

C+
L (CL) are the bosonic creation (annihilation) operators of

the right- and left-moving photons, respectively; ag(a+
g ) and

ae(a+
e ) are the creation (annihilation) operators of the ground

and excited states of the TLA; and �(� = ωe − ωg) is the
transition frequency of the TLA. The atom–photon couplings
can be written as g1,2 = [2π�/ωp1(p2)]1/2�D · Ep1(p2), where
D is the dipole moment of the TLA; ωp1, Ep1 and ωp2, Ep2

are the frequency, polarization of the left- and right-travelling
photons, respectively.

The scattering eigenstate of equation (1) can be expressed
as

|Ek〉 =
∫

dx[φR(x)C+
R (x) + φL(x)C+

L (x)]|0, g〉 + fe|0, e〉,
(2)

where |0, i〉 (i = g, e) represents a non-photon in the optical
waveguide and the corresponding state |i〉 of TLA and fe is the
excitation state amplitude of the state |e〉.

By solving the eigenvalue equation of H|Ek〉 = Ek|Ek〉,
single-photon transmission and reflection coefficients are
written as [28]⎧⎪⎪⎪⎨

⎪⎪⎪⎩
t = g2

1 − g2
2 + 2ivg(� − ω)

g2
1 + g2

2 + 2ivg(� − ω)

r = −2g1g2

g2
1 + g2

2 + 2ivg(� − ω)

, (3)

where ω = Ek/�.
According to [26, 36, 37], the transfer matrix for

equation (3) (one atom embedded in an optical waveguide)
has the following form:

(
a′

b′

)
=

⎡
⎢⎢⎣

t2 − r2

t

r

t

− r

t

1

t

⎤
⎥⎥⎦

(
a
b

)
, (4)

where a and b are, respectively, the incoming and outgoing
wave amplitudes on the left side of the atom; and a′ and b′ are
the outgoing and incoming wave amplitude on the right side
of the atom, when the single photon comes from the left side.
Therefore, these wave amplitudes can be written as a = 1,
b = r, a′ = t, b′ = 0 [36].

So, when the optical waveguide is coupled with two
separated atoms, as shown in figure 1, the transfer matrix of
such a multi-atom system can be described as [26, 36, 37](

a′′′

b′′′

)
= M

(
a
b

)
, (5)

where M =
[

(t2
2 −r2

2 )

t2
r2
t2

− r2
t2

1
t2

][
eiθ 0
0 e−iθ

] [
(t2

1 −r2
1 )

t1
r1
t1

− r1
t1

1
t1

]
. Here

a and b are, respectively, the incoming and outgoing wave
amplitudes on the left side of the left atom; and a′′′ and b′′′

are the outgoing and incoming wave amplitudes on the right
side of the right atom, the w single photon coming from the left
side. Here, θ = ωL/c is the phase difference between these
two separated atoms. t1(t2) and r1(r2) are the corresponding
transmission and reflection amplitudes of the left (right)
atom, respectively. Therefore, the transmission amplitude t
and transmission intensity T of the hybrid system of figure 1
is defined by [26, 36, 37]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t = 1

M22
= eiθ t1t2

1 − r1r2 exp(i2θ )

T = |t|2 =
∣∣∣∣ eiθ t1t2
1 − r1r2 exp(i2θ )

∣∣∣∣
2

=
∣∣∣∣ t1t2
1 − r1r2 exp(i2θ )

∣∣∣∣
2 .

(6)

From equations (3)–(6), we can find that the single-photon
transport properties are determined by the parameters of g1,
g2, θ , �1 and �2(here, �1 and �2 are the transition frequency
of the left and right atoms, respectively).

3. Results and discussion

First, we investigate the single-photon transport properties
with symmetric atom–photon couplings (g1 = g2 = 0.2) and
�1 = �2 = �, as shown in figure 2.
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Figure 2. The single-photon transmission spectrum under the
symmetrical atom–photon couplings (g1 = g2 = 0.2). 2θ = 2π for
the red line, 2θ = π for the blue line, and 2θ = 0.4π for the green
line. The coupling strengths g1 and g2 are in units of Vg.

When 2θ = 2π , a symmetrical Lorentz line shape of
the single-photon transmission spectrum is depicted by the
red line in figure 2. The dip in the transmission spectrum at
ω = � can be explained by the fact that the incident photon
is on-resonant with the transition frequency of the TLA. In
this case, the left TLA is excited while the right TLA is not
excited. Therefore, the incident single photon from the left
side is completely reflected by the left atom, leading to a
dip at ω = �. In the case of 2θ = π , a symmetrical line
shape of the transmission spectrum is shown by the blue line
in figure 2. Here, the transmission is the sum of two new
resonances of t ′2 = [(1 + i)2A]/[i(ω − � − A) − A] and
t ′2 = [(1 − i)2A]/[i(ω − � + A) − A], where A = g2/vg

(the transmission intensity T of the hybrid system in figure 1
is defined as T = ∣∣1 + e−iθ (t ′1 − t ′2)/2

∣∣2
and both of the atom–

photon couplings for the new resonance are still g [34]). When
2θ �= nπ (n is an integer), the resonance frequencies can
be considered as �′

1 = � + A sin θ and �′
2 = � − A sin θ ,

respectively. Therefore, the transmission spectrum of the
incident single photon is modified by the phase difference of
θ and an asymmetric Fano-type line shape of the transmission
spectrum can be obtained, as shown in figure 2 (green line).

Now, we study coherent transport properties of the
single photon under asymmetric atom–photon couplings,
where g1 �= g2 and �1 = �2 = �. Figure 3(a) shows
the single-photon transmission spectrum with asymmetrical
atom–photon couplings and 2θ = 2π . There is one peak at
ω = � and two side dips in the transmission spectrum, which
would not occur in the situation of the symmetric atom–photon
when the two atoms are in tune (�1 = �2 = �). Here, the
peak at ω = � is induced by the asymmetric atom–photon
couplings of g1 �= g2 and the phase difference (θ ) caused by
these two separate atoms. When the incident single photon
is on-resonant with the TLA, it will be completely reflected
for the symmetric atom–photon couplings g1 = g2; however,
for the asymmetric atom–photon couplings, the single photon
can partially transmit through the on-resonance TLA due to
the redistribution of energy and momentum of the incident
photon after scattering by the atom [28]. In this case, these
two TLAs (even though on-resonance) can be considered
as a partially reflecting/transmitting mirror. Therefore, the

peak at ω = � is well understood as follows: these two
atoms and the optical waveguide can be considered as a
Fabry–Pérot resonator. Although the atoms are on-resonant
with the incident photon, the single photon can also partially
pass through the left atom. So, the forward and backward
light fields between these two separated atoms interfere with
each other. In addition, the interference is modulated by the
phase difference depending on the distance between these two
atoms and resulting in single-photon responses at different
incident frequency. Here, the peak at ω = � is caused by
the constructive interference of light fields due to the phase
difference (θ ) between these two separated atoms. So, the
phenomenon in figure 3(a) (EIT-like transmission spectrum)
can be defined as the phase-coupled induced transparency
as discussed in [35]. With increasing the ratio of g1/g2, the
transmittance values of these two-side peaks (Rabi splittings)
can be changed from 0 to 1, which can be considered as a
symmetric bifrequency-like photon attenuator. When 2θ = π ,
the single-photon transmission spectrum is different from that
of 2θ = 2π . Only one dip appears at ω = �, as shown in
figure 3(b), which is caused by the destructive interference
between the forward and backward light fields. By increasing
the ratio of g1/g2, the incident photon with frequency of
ω = � can be controlled from 0 to 1, which means that
a single-frequency of the photon attenuator can be realized
by manipulating the asymmetric atom–photon couplings.
Comparing the transmission spectrum in figures 3(a), (b) and 2
(red line), we can find that two kinds of optical switches can be
obtained by controlling the symmetric and asymmetric atom–
photon couplings and also the phase difference between these
two atoms. For example, when 2θ = 2π and g1 = g2, the single
transmission spectrum shows a dip (with T = 0) at ω = � (the
red line g1 = g2 = 0.2 of figure 3(c)), while it shows a peak (with
T = 1) at ω = � for the asymmetrical atom–photon couplings
(the green line g1 = 0.2, g2 = 0.15 of figure 3(c)). That is
to say, a single-photon switch can be realized by changing
the atom–photon couplings. Furthermore, for the asymmetric
atom–photon couplings, another kind of single-photon switch
at ω = � can also be achieved by controlling the phase
difference between these two atoms, as shown in figure 3(c)
(blue line for 2θ = π , green line for 2θ = 2π ). For 2θ �= nπ

(n is an integer) such as 2θ = 0.4π and asymmetric atom–
photon couplings, Fano-type line shapes of the transmission
spectrum also appears (figure 3(d)), which is similar to the
case of the symmetric atom–photon couplings case shown in
figure 2 (green line). By manipulating the ratio of g1/g2, the
dip near ω = � can also be changed from 0 to 1, totally
resulting from the asymmetric atom–photon couplings.

In addition, we also discuss the single-photon transport
properties under asymmetric atom–photon couplings, when
the left atom is detuned from the right atom. Figure 4(a)
depicts the single-photon transmission spectrum for the case
of 2θ = 2π and �1 = 0.9 � (for the left atom), �2 = 1.1 �

(for the right atom). For g2 = 0.15, a EIT-like transmission
spectrum structure is shown by the red line in figure 4(a). Two
side dips with T = 0 located at ω = �1,�2, and the complete
transmission peak with T = 1 located at ω = (�1 + �2)/2. In
other words, these two separated atoms behave as two mirrors
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(a) (b)

(c) (d)

Figure 3. The single-photon transmission spectrum under asymmetrical atom–photon couplings (g1 �= g2 and g1 = 0.2) and 2θ = 2π (a),
2θ = π (b), 2θ = 0.4π (d). (c) Single-photon switch by controlling the atom–photon couplings and the phase difference between these two
separated atoms. The coupling strengths g1 and g2 are in units of Vg.

(a) (b)

(c)

Figure 4. The single-photon transmission spectrum under symmetrical atom–photon couplings and 2θ = 2π (a), 2θ = π (b), 2θ = 0.4π
(c) with �1 = 0.9 � (left atom) and �2 = 1.1 � (right atom) and � = 1.0. (d) The energy-level configuration of the 	-type three-level
atom. V1 = g1

2/2 vg = 0.2 and V2 = g2
2/2 vg. The coupling strengths g1 and g2 are in units of Vg.

with two different resonance frequencies (corresponding to
two side dips). With the increasing of the g1/g2 ratio, the
transmittivity of these two-side peaks at ω = �1,�2 can

be changed from 0 to 1, leading to a symmetric bifrequency
photon attenuator. For 2θ = π , there is still the EIT-like
transmission spectrum structure for the incident single photon.
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(a) (b)

Figure 5. The single-photon transmission spectrum under asymmetrical atom–photon couplings (g1 = 0.2, g2 = 0.15) and atom dissipation
(1/Ta = 0.1 �): (a) �1 = �2 = �, 2θ = 2π (red line), 2θ = π (blue line), 2θ = 0.4π (green line); (b) �1 = �2 = �, 2θ = 2π (red line),
2θ = π (blue line), 2θ = 0.4π (green line). The coupling strengths g1 and g2 are in units of Vg.

But, the peak located at ω = (�1 + �2)/2 no longer has
T = 1 for V2 = 0.15. Here, it can also be explained that the
forward and backward light fields interfere with each other
and meanwhile the peak at ω = (�1 + �2)/2 with T �= 1
is also caused by the destructive interference of the light
fields between these two separated atoms. By controlling the
asymmetric atom–photon couplings, a symmetric bifrequency
photon attenuator can also be realized for 2θ = π . When
2θ �= nπ (n is an integer) such as 2θ = 0.4π , the
transmission spectrum is different from that of 2θ = nπ .
For example, when g2 = 0.15 and 2θ = 0.4π (red line in
figure 4(c)), there is an asymmetric EIT-like transmission
spectrum structure due to the phase (θ ) modulation. So,
when we tune the ratio of g1/g2, asymmetric transmittance
at ω = �1,�2 will occur, which can be considered as an
asymmetric bifrequency photon attenuator. In other words, all
of the EIT-like transmission spectrum in these three cases
(2θ = 2π, π, 0.4π ) can also be mapped into the phase-
coupled induced transparency as described in [35]. At ω =
(�1+�2)/2, both of these two atoms can also be considered as
two partially reflecting/transmitting mirrors. The waveguide
region between the atoms acts as a Fabry–Pérot cavity bounded
by these two partially reflecting mirrors. The cavity is resonant
at ω = (�1 + �2)/2, and displays a transmission maximum,
leading to the EIT-like transmission spectrum. In addition, the
peak at ω = (�1 + �2)/2 is also modulated by the phase
difference between these two separated atoms. These two dips
at ω = �1,�2 are corresponding to Rabi splitting, which
can be controlled by asymmetric atom–photon couplings.
Therefore, the transmission probability of the resonant incident
photons at ω = (�1 + �2)/2 can also be changed from 1 to
0, resulting in symmetric and asymmetric bifrequency photon
attenuators.

Finally, we investigate the realistic physical model of
our hybrid system by considering the dissipation effect of
the atom as discussed in [12]. When �1 = �2 = � and
g1 = 0.2, g2 = 0.15, figure 5(a) depicts the single-photon
transmission spectrum with atom dissipation 1/Ta = 0.1 �

under asymmetric atom–photon couplings. In this case, there
is a dip at ω = �. The EIT-like and Fano-type transmission
spectrum (in the non-dissipation case) disappears due to the
effect of atom dissipation. In addition, the dip at ω = � cannot

be tuned from 0 to 1 by using the asymmetric atom–photon
couplings (not shown in figure 5). Therefore, in the realistic
case, we can just achieve an imperfect single-frequency
photon attenuator by controlling the asymmetric atom–photon
coupling, when �1 = �2 = �. When �1 = 0.9 � (for
the left atom), �2 = 1.1 � (for the right atom), symmetric
and asymmetric EIT-like transmission spectra also appear, as
shown in figure 5(b). In this situation, the transmission spectra
are very similar to that of the non-dissipation case (shown
in figure 4). However, at ω = �, the incident single photon
cannot be fully transported through the hybrid system (T �= 1 at
ω = � due to the atom dissipation), leading to the imperfect
EIT-like transmission spectrum due to the atom dissipation.
Furthermore, the corresponding Rabi splitting at ω = 0.9 �

and ω = 1.1 � cannot be tuned from 0 to 1 by controlling
the asymmetric atom–photon coupling, resulting in imperfect
bifrequency photon attenuators (not shown in figure 5(b)).

4. Conclusion

In conclusion, we have theoretically investigated the coherent
transport properties of the single photon in a hybrid system
containing an optical waveguide coupled with two separated
TLAs. By controlling the symmetric as well as asymmetric
atom–photon couplings and the phase difference caused by the
separated atoms, many interesting phenomena such as phase-
coupled induced transparency, single-photon switches and
symmetric and asymmetric single-frequency and bifrequency
photon attenuators can be realized. Our results may be useful
in manipulating light–matter interactions in CQED systems
and may have potential applications in all-optical quantum
information processing.
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