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Analytical transfer matrix method (ATMM) is a method for calculating the propagation constant in weakly
guiding optical fiber. By using ATMM, the optical fiber with a depression in the index profile center and a
valley in the cladding layer is analyzed. Compared with Wentzel–Kramers–Brillouin (WKB) method, the
simulation result of differential mode delay (DMD) by using ATMM fits well with the experimental results
obtained by Takahashi. Based on ATMM, by increasing the depth of central depression in a W-shaped index
fiber, the improvement of DMD is also discussed.
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1. Introduction

In recent years, optics communication with dense-wavelength-
division-multiplexing (DWDM) network has become the major
communication mechanism for metropolitan wide-area networks
and long-haul transmission system [1]. In order to acquire wide
bandwidth and low dispersion, optical fibers are fabricated with
various refractive index profiles, such as step form and graded form
[2]. In particular, W-shaped refractive index profile in the silica-based
multimode fiber (MMF) was proposed by Okoshi, Oyamada, and
Okamoto [3,4], with an advantage in reducing model dispersion
compared with graded index optical fiber. Lately, detail theoretical
and experimental investigations taken by Ishigure et al. affirmed the
advantage of W-shaped index profile [5–8]. For the theoretical
analysis, WKB method, which is one of the well-known methods for
solving one-dimensional Schrödinger equation in quantum theory
and widely applied to optical waveguide because of its briefness, was
used. However, the simulation results by usingWKBmethod deviated
from their experimental data. Although some modifiedWKBmethods
are developed, it still has some drawbacks [9], i.e., it is only accurate
for a fiber with slowly changing index profile.

Analytical transfer matrix method (ATMM) originates from the
matrix method to deal with the multi-layer waveguide [10–14]. The
clear physical meaning and easy calculation for waveguide problems
make ATMM suitable for the analysis of weakly guiding optical fibers
with arbitrary refractive index profile [15]. As M.R. Shenoy has
pointed out, matrix method can be applied to analyze the waveguide
with more realistic continuous refractive index profiles compared to
the depressed-inner-clad (DIC) fibers [10]. In this paper, ATMM is
used to investigate DMD of the W-shaped optical fibers, which is
caused by the modal dispersion. The calculated results of DMD fit well
with the experimental results. Furthermore, the relation between
DMD and depression in the center of index profile is also investigated.

2. Theory

2.1. The index profile

The index profile of a typical W-shaped optical fiber is shown by
the following equation:

n =
n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ρΔ

r
r0

� �g
s

0 < r < r0

n2 r ≥ r0

;

8><
>: ð1Þ

where n1 and n2 are the refractive indices of core center and cladding
layer, respectively. r0 is the radius of core, and Δ=(n12−n2

2)/(2n12),
which shows the relative index difference between the core center
and the cladding layer. The parameters g is the index exponent and
ρ is a parameter which determines the depth of the index valley.
However, this equation cannot accurately show the measured index
profile, because there is always a depression near the core center layer
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in a typical W-shaped optical fiber and the index profile in cladding
layer is not step-like function in real case [5–7]. Besides, when
applying chemical-vapor-deposition (CVD) process, a depression also
appears in the core center [16]. And all these depressions can affect
the propagation properties of the optical fibers significantly, which
deserves detail investigation. Ishigure et al. pointed out that their
simulation by using this approximation as shown in Eq. (1) eventually
led to a disagreement of DMD from their experimental results and the
theoretical results [6]. Thus, in order to make our simulation more
accurate, we fit this profile by the following equation

n =

−m1 r−m0ð Þ2 + m2

n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2ρΔ

r
r0

� �g
s

m3

r + m4
+ m5

0 ≤ r ≤ m0

m0 < r ≤ r0
r > r0

;
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wherem0 is the boundary between the depression and the power-law
part. The parameters in Eq. (2) are as follows.

m0 = 57 μm; m1 = 4:0012 × 105 m−2
; m2 = 1:51158;

m3 = −0:18436 μm; m4 = −184:10 μm;
m5 = 1:5030; n1 = 1:5117; ρ = 1:8; g = 4:1; r0 = 200 μm

The calculated index profile by using Eq. (2) is shown in Fig. 1, and
our profile fits better with the experimental results than the simulation
results obtained by Takahashi et al. [5].

2.2. Analytical transfer matrix method

A transverse field function used to describe the linear polarized
(LP) mode for a certain optical fiber is like the following:

d2F
dr2

+
1
r
dF
dr

+ k20n
2 rð Þ−β2− l2

r2

" #
F = 0: ð3Þ

For the easy calculation, a mathematical trick is introduced. We
define an intermediate parameter

u rð Þ = ffiffiffi
r

p
F rð Þ ð4Þ
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Fig. 1. The refractive index profile of theW-shaped optical fiber with a depression in the
center. The square dots are measured results obtained by Takahashi et al. [1], while the
dashed dotted line is plotted according to Eq. (1), and the solid line is plotted according
to Eq. (2).
and the equivalent index neq

n2
eq rð Þ = n2 rð Þ−

l2−1
4

k20r
2 : ð5Þ

Thus, we have

d2u
dr2

+ k20 n2
eq rð Þ−n2

eff

h i
u = 0; ð6Þ

where neff=β/k0.
By substituting Eq. (2) into Eq. (5), we obtain the profiles of n2

eq

of the W-shaped weakly guiding optical fiber which are shown in
Fig. 2.

When lN0 (Fig. 2(a)), we truncate the profile at rmin and rmax.
The field variations in (0, rmin) and (rmax, +∞) cannot affect the
calculation accuracy [15]. In the region (rlow, rhigh), the electrical
field shows an oscillatory behavior, while in the regions (rmin, rlow)
and (rhigh, rmax), the field shows an evanescent behavior. When l=0
(Fig. 2(b)), we truncate the profile at rlow and rmax similarly. The
electrical field in (rlow, rhigh) is oscillatory, while the field in (rhigh,
rmax) is evanescent. We divide the region (rmin, rlow), (rlow, rhigh),
and (rhigh, rmax) into (low–min), (high–low) and (max–high) layers,
respectively. (Note: 1. “min,” “low,” “high,” and “max” are marked
for rmin, rlow, rhigh, rmax, respectively; 2. normally, 1000 layers in each
region are enough, as the accuracy of neff can reach 1×10−7, which
is enough for the accuracy requirement in the following discussion.
By using more layers, the improvement of accuracy is only in the
order of 1×10−7.)
O rmin rlow rhigh r=r0 rmax r

O rlow rhigh r=r0 rmax r
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Fig. 2. The profile of the square of equivalent refractive index of W-shaped fiber n2eq.
(a) When lN0, there are two intersections between n2eff and n2eq. The profile is
truncated at rmin and rmax; (b) when l=0, there is only one intersection between n2eff
and n2eq. The profile is truncated at rlow and rmax.
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Fig. 3. V–b curve. The solid line is the V–b curve of LP01, and the dashed line is the V–b
curve of LP11. The square dots and round dots are the exact value by FEM of LP01 and
LP11, respectively.

5132 J. Zhu et al. / Optics Communications 284 (2011) 5130–5134
The transfer matrix of the jth layer in the region (rlow, rhigh) is
shown as follows [12–15]:

Mj =
cos κjhj

� �
− 1

κj
sin κjhj

� �

κj sin κjhi
� �

cos κjhj

� �
0
BB@

1
CCA j = low; low + 1;…;high−1;high;

ð7Þ

where κj = k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
eq rj
� �

−n2
eff

q
represents the transverse wave number,

and hj is the thickness of the jth layer.
Also, in the region (rmin, rlow) (this region does not exist when

l=0) and (rhigh, rmax), the transfer matrix of the ith layer is

Mi =
cosh αihið Þ − 1

αi
sinh αihið Þ

−αi sinh αihið Þ cosh αihið Þ

0
B@

1
CA

i = min;min + 1;…; low;high + 1;high + 2;…;max;

ð8Þ

where αi = k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
eff−n2

eq rið Þ
q

represents the evanescent behavior.
The recursion equation is as follows [17]:
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By simplifying Eq. (9), we have

us
u′s

� �
= Ms

us+1
u′s+1

� �
; s = i or j: ð10Þ

Now a parameter p is defined to express the field intensity,

ps =
us

u′s
=

u rsð Þ
u′ rsð Þ : ð11Þ

Thus, by simplifying Eq. (10), we obtain

pj = tan arctan
pj+1

pj

 !
−κjhj

" #
j = high−1;…; low + 1 ð12Þ

and

pi = αi

sinh αihið Þ + pi−1

αi
cosh αihið Þ

cosh αihið Þ + pi−1

αi
sin αihið Þ

; ð13Þ

where

i = min + 1;…; low high + 1;…; max
high + 1;…;max

l > 0
l = 0 :

	

Next, we rewrite Eq. (12) and get

κjhj = qjπ + arctan
pj
κj

 !
− arctan

pj+1

κj

 !
qj = 0;1; 2; j = low;…;high−1:

ð14Þ
Then, a typical eigen equation of the optical fiber [15] can be
written as

∑
high−1

j=low
κjhj + Φ sð Þ = m−1ð Þπ− arctan

plow−1

κlow

� �
− arctan

phigh
κhigh−1

 !
;

ð15Þ

where m is the radial order.

Φ sð Þ = ∑
high−2

j=low
arctan

pj+1

κj+1

 !
− arctan

pj+1

κj

 !" #
: ð16Þ

In the first layer, we can write

pmin = α r minð Þ l > 0
κ rlowð Þ l = 0 :

	
ð17Þ

And in the last layer, the pmax can be written as,

pmax = α rmaxð Þ: ð18Þ

Now, we already get the recursion equation (Eqs. (12) and (13)),
together with the initial values of the recursion equation pmin and
pmax. Thus, by substituting all these into Eq. (15), we can obtain the
value of neff and β.

3. Simulation

To show the accuracy of ATMM, the normalized frequency V as the
function of the normalized refractive index b of this particular optical
fiber is calculated to make a comparison with the value which is
obtained by finite element method (FEM). The parameter V and b are
defined as:

V = k0n1r0
ffiffiffiffiffiffiffi
2Δ

p
; ð19Þ

b =
n2
eff−n2

2

n2
1−n2

2

: ð20Þ

The numerical results are shown in Fig. 3. From Fig. 3, we can see
that the results of the ATMM are almost the same as those of the FEM.
As a result, the accuracy of ATMM is proved.

In order to accurately analyze DMD of the W-shaped fiber, we use
the index profile described by Eq. (2) instead of Eq. (1). By solving the
eigen equation Eq. (15), we can get the effective index with a series of



Table 1
neff with different LP modes (at wavelength 650 nm).

LP mode No central depression m1=4.0012×105 m1=3×4.0012×105 m1=6×4.0012×105

l m neff neff neff neff

0 1 1.511687 1.511553 1.511547 1.511541
1 1 1.511673 1.511537 1.511519 1.511507
2 2 1.511607 1.511442 1.511399 1.511375
3 4 1.511462 1.511268 1.511184 1.511134
5 5 1.511329 1.511158 1.511062 1.511002
6 7 1.511138 1.510966 1.510842 1.510759
10 10 1.51071 1.510574 1.510446 1.510344
14 13 1.510228 1.510116 1.509998 1.50989
18 16 1.509701 1.509606 1.509502 1.509394
24 28 1.507875 1.507788 1.507679 1.507545
35 35 1.506178 1.506117 1.506043 1.505948
40 40 1.505079 1.505024 1.504959 1.504873
50 40 1.504359 1.504322 1.504283 1.504231
40 50 1.503501 1.503439 1.50336 1.503252
50 50 1.502736 1.502691 1.502639 1.502568
40 60 1.501844 1.501777 1.501687 1.501561
48 60 1.501199 1.501145 1.501078 1.500984
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l andm (l andm are the subscripts of LPmode and represent azimuthal
order and radial order, respectively), which is put in column 3 of
Table 1. The numbers of effective index shown in column 4 and 5 will
be discussed later.

The principal mode number is defined by q= l+2m [18], which
means different LP mode can result in the same principal mode
number as neff values of these LP modes are the same. The principal
modes used to calculate DMDs are chosen according to Table 1.

The mode delay can be determined by the following equation [6]:

τ =
L
c
k0
β

∫
r2

r1

n2 + nk0
dn
dk0

R
dr

∫
r2

r1

dr
R

; ð21Þ

with

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20−β2− l2

r2

s
; ð22Þ

where n is the index profile in Eq. (2), c means the light velocity in
vacuum, L=100 m is the length of the fiber as presented in Ref. [5], r1,
r2 are the roots of Eq. (22) at R=0, and dn/dk0 is determined by the
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relation between wavelength and refractive index of PMMA (poly-
methyl methacrylate) [19].

Substituting all the neff values shown in column 3 and 4 of Table 1
into Eq. (21), we obtain a series of mode delay values, and the DMD
values can be obtained by subtracting the mode delay of the funda-
mental mode LP01.

The normalized principal mode number is defined by q/Q, where Q
is the max principal mode number [18]:

Q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

g + 2

� �
r20k

2
0n

2
1Δ

s
: ð23Þ

The simulation results calculated by ATMM, the simulation results
calculated by Takahashi et al. [5], and the experimental data obtained
by Takahashi et al. [5] are shown in Fig. 4. The DMDs of some principal
modes are presented in Table 2 to make a comparison between the
accuracy of ATMMandWKBmethod, in which the exact values are the
experimental results. From Fig. 4, we can see that ATMM results are
closer to the experimental result compared to WKB method. The
difference between ATMM and experimental result is caused by the
slightly difference in the quadratic part of the index profile. We cannot
fit the index profile of an optical fiber perfectly. Furthermore, there are
always some undulations in the profile which we have to ignore. In
Fig. 4, there is a large difference between the result of WKB and
measured DMD in the high-order modes, as the higher order modes
carry more energy in their evanescent field, which is strongly affected
by the index profile at the core-cladding boundary, than those in the
lower order modes. Thus, the group delay of the high-order modes
shows great difference to the experimental result [7].

The calculated DMD of the fiber with no central depression is
slightly different to the one with depression in the core center, and
Table 2
DMDs of exact results [1], ATMM results and WKB results.

Principal mode Exact ATMM WKB

q DMD (ps)

0.01163 0 0 0
0.1603 82.2 0.6 3.6
0.27608 123.3 192.1 302.2
0.388 183.6 300.6 384.2
0.52543 219.2 513.6 571.3
0.69464 315.1 763.3 1043.7
0.7837 465.8 904.3 1327.1
0.89057 561.6 1078.6 1664.1
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both of them are closer to the experimental results compared to the
one obtained by WKB method.

Furthermore, we also research the depth of the depression in core
center in order to investigate detail property of W-shaped optical
fiber. In Eq. (2), we defined a parameter m1 to describe the profile in
the depression region. The depth of the depression in the center
increases with the increase ofm1. In order to give a brief illustration of
the effect on DMD caused by the change ofm1, we calculate the values
of neff with different m1, i.e., m1=4.0012×105 (original depth),
3×4.0012×105 (3 times depth), and 6×4.0012×105 (6 times depth),
and these refractive index profiles are shown in Fig. 5. The values of
neff are shown in column 4 and 5 of Table 1. Then, by using the values
of neff, we can get the values of DMD (Fig. 6).

From Fig. 6, we can see that when increasing the depression depth
in the core center, the delay time decreases. It is proved by Ishigure et
al. that the group delay difference between the highest and lowest
order modes in W-shaped fiber is much smaller than that in the
graded index fiber, which is caused by the modal dispersion com-
pensation effect from the refractive index valley [6]. In Fig. 6, we can
see the central depression also contributes to the modal dispersion
compensation effect. Furthermore, as the energy of low order modes
concentrates on the core center, the change of the depth of the
depression leads to the change of group delay, especially in the low
order modes. With short group delay time, the velocity difference of
eachmode propagating along the fiber is slight, which implies that the
dispersion effect and the loss of field energy are reduced. Deep
depression in the central of refractive index profile helps to decrease
the modal dispersion effect. It leads to a long relay distance when the
W-shaped fiber is applied to communication networks.
4. Conclusion

In this paper, the values of DMD in a typical W-shaped fiber with
the different central depression are discussed. Based on the discussion
above, ATMM can be used to analyze the weakly guiding fiber with
arbitrary index profile, and the results calculated by ATMM theory
show better fitting with the experimental results presented by
Takahashi et al. [5] than by WKB method. Furthermore, we also
suggest that with the increasing depth of original depression in the
center of index profile, the value of DMD is reduced, which also leads
to good communication quality.
Acknowledgment

The authorswould thank Dr. Zheng Liang for useful help. This work
was partly supported by the Research Fund for “Chen Guang” project
supported by Shanghai Municipal Education Commission and Shang-
hai Education Development Foundation (grant no. 09CG49), Shanghai
Committee of Science and Technology (grant no. 11ZR1425000,
09QA1404200), the Nano-tech Foundation of Shanghai Committee
of Science and Technology (grant no. 0952nm02400), The National
Undergraduates' Innovation Experiment Program (091025213), Ph.D.
Programs Foundation of Ministry of Education of China
(20093120120007), and National Natural Science Foundation of
China (61007059), and Shanghai PuJiang Program from Science and
Technology Commission of Shanghai (09PJ1407800).

Reference

[1] I.B. Djordjevic, S. Sankaranarayanan, B.V. Vasic, J. Lightwave Technol. 22 (3) (Mar.
2004) 695.

[2] R.L. Lachance, P.-A. Bélanger, J. Lightwave Technol. 9 (11) (Nov. 1991) 1425.
[3] K. Okamoto, T. Okoshi, IEEE Trans. Microwave Theory Tech. 25 (3) (Mar. 1977)

213.
[4] K. Oyamada, T. Okoshi, IEEE Trans. Microwave Theory Tech. 28 (10) (Oct. 1980)

1113.
[5] K. Takahashi, T. Ishigure, Y. Koike, J. Lightwave Technol. 24 (7) (Jul. 2006) 2867.
[6] T. Ishigure, H. Endo, K. Ohdoko, K. Takahashi, Y. Koike, J. Lightwave Technol. 23 (4)

(Apr. 2005) 1754.
[7] T. Ishigure, H. Endo, K. Ohdoko, Y. Koike, IEEE Photonics Technol. Lett. 16 (9) (Aug.

2004) 2081.
[8] T. Yamashita, M. Kagami, J. Lightwave Technol. 23 (8) (Aug. 2005) 2542.
[9] A. Gedeon, Opt. Commun. 12 (3) (Nov. 1974) 329.

[10] M.R. Shenoy, K. Thyagarajan, A.K. Ghatak, J. Lightwave Technol. 6 (8) (Aug. 1988)
1285.

[11] Z. Cao, C. Hu, G. Jin, J. Opt. Soc. Am. B 8 (12) (Dec. 1991) 2519.
[12] Z.Q. Cao, Y. Jiang, Q.S. Shen, X.M. Dou, Y.L. Chen, J. Opt. Soc. Am. A 16 (1999) 2209.
[13] Z.Q. Cao, Q. Liu, Q.S. Shen, X.M. Dou, Y.L. Chen, Y. Ozaki, Phys. Rev. A 63 (2001)

054103.
[14] Z.Q. Cao, Q. Liu, Y. Jiang, Q.S. Shen, X.M. Dou, Y. Ozaki, J. Opt. Soc. Am. A 18 (2001)

2161.
[15] Z. Liang, Z. Cao, Q. Shen, X. Deng, J. Lightwave Technol. 23 (2) (Feb. 2005) 849.
[16] A.K. Ghatak, R. Srivastava, Appl. Opt. 22 (11) (1983) 1763.
[17] Q. Liu, Z. Cao, Q. Shen, X. Dou, Y. Chen, Opt. Quantum. Electron. 33 (6) (2001) 675.
[18] I. Takaaki, K. Mariko, K. Yasuhiro, J. Lightwave Technol. 18 (7) (2000) 959.
[19] K. Liu, R. Yu, Acta Photonica Sin. 31 (7) (2002) 819.

image of Fig.�6

	Theoretical study of W-shaped optical fiber with a depression in core center by applying analytical transfer matrix method
	1. Introduction
	2. Theory
	2.1. The index profile
	2.2. Analytical transfer matrix method

	3. Simulation
	4. Conclusion
	Acknowledgment
	Reference


