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The impact of the bandgap induced by transversal constriction on the sub-Poissonian properties of

graphene armchair-edge nanoribbons (GANRs) has been investigated in a theoretical perspective.

For a typical GANR with a bandgap, the minimal conductivity at the Dirac point becomes more

suppressed than that of the gapless case 4e2=ph, and the Fano factor becomes more enhanced than

the originally predicted value 1/3. The amplitudes of conductivity suppression and Fano factor

enhancement will grow large as the nanoribbon width decreases. And the variance of Fano factor is

qualitatively consistent with the reported experimental data. The carriers of GANRs with gaps

behave like counterparticles in a semiconductor, and the transition from the sub-Poissonian to a

Poissonian process takes place gradually with the reduction of the nanoribbon width. For the low

aspect ratio (the sample width over its length) limit, the shot noise property at the Dirac point is no

longer sensitive to the boundary edges. For the high limit, it requires a larger aspect ratio for the

minimal conductivity and maximal Fano factor to achieve stationary values than that of the gapless

case. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758302]

I. INTRODUCTION

Graphene-based devices have developed rapidly since the

experimental isolation of graphene.1–7 Digital logic devices are

of great potential in sorts of application perspectives.4–7 The

zero-bandgap dispersion of graphene leads to a minimal

conductivity,2 even for zero carrier density, which produces an

extremely low on-off ratio, a fatal disadvantage in logic devi-

ces. To improve the performances, a few ways are developed to

open bandgaps in the linear dispersion, such as tailing graphene

into nanoribbons or quantum dots, biasing bilayer graphene,

and applying strain to graphene.7 In fact, graphene nanoribbon

(GNR) is an ideal candidate to engineer band structures using

conventional semiconductor technologies. The bandgap of

GNRs is inversely linear with the nanoribbon width. The trans-

port properties of this mesoscopic system have attracted enor-

mous attention to unveil the mechanism of Dirac fermions.8,9

Shot noise originates from the discrete nature of electric

charge. It may be dominant when the number of carriers is

sufficiently small so that the current fluctuation in time due

to the random distribution is of significance.10 And it can be

a source of information which is not contained in the time-

averaged value, such as the Fano factor F¼ 2 denoting the

Cooper pair in superconductors,11 F¼ 1/3 implicating the

filling fraction of the lowest Landau level in the fractional

quantum Hall effect,12 F¼ 1/3 also indicating the strongly

conducting transmission channels in disordered gold wire,13

and so on. The classical dynamics in the graphene strip

should be a ballistic process at low temperature in the ab-

sence of impurity scattering, strain or other defects, and

spin-orbit interaction. One can expect a Poisson process in

such a graphene. However, Tworzydlo et al.14 predicted in

theory that the Fano factor of graphene strips at Dirac point

equals 1/3, 3 times smaller than a Poisson process. It is the

same value as for a disordered metal, which can be called

sub-Poissonian shot noise. This extraordinary phenomenon

has attracted much interest in theoretical15–18 and experi-

mental perspectives.19,20 Sonin has analyzed the shot noise

in the ballistic regime, which includes the comparison

between the coherent and incoherent limit for arbitrary drops

between leads and the central region16 and the effect of Klein

tunneling on the coherent transport properties.18 Castro

Neto’s group has discussed the shot noise in disordered sys-

tems, including the dependence of conductance on the carrier

density controlled by disorder strength and aspect ratio15 and

the edge roughness in graphene nanowires, which results in

conductance suppression due to Anderson localization.17

Simultaneously, this peculiar sub-Poissonian shot noise has

been verified in experiment.19,20 DiCarlo et al.19 demon-

strated that the Fano factor keeps steady within 610% upon

different carrier type and density and averages between 0.35

and 0.38. Here, we noted that the measured Fano factor is a

little higher than the predicted value 1/3. And the quantum

constriction along the transversal dimension can produce a
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nontrivial bandgap, which makes the dispersion deviate from

the originally linear relationship. Maybe, the induced gap

can explain the higher Fano factor observed in experiment.

It is the purpose of the present paper to investigate the

influence of the induced gap on the sub-Poissonian shot

noise in graphene armchair-edge nanoribbons (GANRs).

The lateral quantum confinement makes the transversal

wavevector discrete, producing an energy gap, which scales

inversely with the nanoribbon width.21,22 Moreover, the

subband formation of GNRs is observed in experiments,23

and a structured external potential can induce a spectral gap

and realize the switch from metallic to insulating behav-

ior.24 Thus, it is possible to engineer the band gap by

manipulating the width of GNR. The longitudinal and trans-

versal momenta are not coupled by boundary edge in

armchair-edge nanoribbons, while the zigzag edge is the

very case where the longitudinal momentum couples with

the transversal one, which will complicate the analytical so-

lution. So we considered the graphene armchair-edge nano-

ribbons case for simplicity. Based on the previous

works,14,25 taking the induced bandgap into account, we

have studied the changes of sub-Poissionian shot noise. The

rest of the paper is organized as follows. In Sec. II, the

model and formalism is described by using Dirac-fermion

approach. In Sec. III, the transmission and conductivity of

multi-modes are analyzed, and the effect of induced

bandgap on the sub-Poissonian shot noise is discussed in

details. A brief summary is concluded in Sec. IV.

II. MODEL AND FORMALISM

The model we considered is shown in Fig. 1. The aspect

ratio (W/L) is of significance for GNRs, and the potential

profile can be controlled via gate voltage.26–28 Here, the mi-

croscopic mechanisms, such as the electron-phonon, elec-

tron-electron, and spin-orbit interaction, are assumed to be

ignored, and the zero-temperature approximation is set in

order to compare numerical results with others’ experimental

data. In the low energy regime (� < 1 eV) near Dirac points

K and K0, the wave functions can be described in terms of en-

velope functions ½wAðrÞ�;wBðrÞ�
T

and ½w0AðrÞ�;w0BðrÞ�
T
,

where A and B stand for the two interpenetrating triangle

sublattices, respectively, and T stands for transposed ma-

trix.29 Thus, the complete wave function can be expressed as

WðrÞ ¼ ½wAðrÞ�;wBðrÞ;w0AðrÞ�;w0BðrÞ�
T
.

A. Dispersion and boundary

Taking the bandgap 2D induced by quantum restriction

into account, the Dirac equation ½vFðr � pÞ þ UðxÞ�W ¼ EW
can be rewritten as

�i�hvFðrx@xþ ry@yÞ þ rzD 0

0 �i�hvFðrx@x� ry@yÞ � rzD

� �
WðrÞ þ UðxÞWðrÞ ¼ EWðrÞ; (1)

where

D ¼ hvF=3W; (2)

h is the Plank constant, vF � 108 cm � s�1 is the Fermi veloc-

ity, ra is Pauli matrix (a ¼ x; y; z), and U(x) is the potential

profile. Eq. (2) is only a rough expression, and the bandgap

is proved to be reversely linear with the width of GNRs,

where the precise coefficient is distributed in a range.21,22

The wavevectors can be denoted as kx and ky. For a

fixed potential U, detjH � Ej ¼ 0 can be expressed from

Eq. (1) as

U þ D� E �hvFðkx � ikyÞ 0 0

�hvFðkx þ ikyÞ U � D� E 0 0

0 0 U � D� E �hvFðkx þ ikyÞ
0 0 �hvFðkx � ikyÞ U þ D� E

��������

��������
¼ 0: (3)

Thus, the dispersion can be derived as

E ¼ U6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ �h2v2

Fk2

q
; (4)

where k2 ¼ k2
x þ k2

y . Eq. (4) is the disperse relation of GNRs

with an energy gap. When the potential profile is U¼ 0,

Fig. 2 presents the corresponding numerical results for vari-

ous width of GNRs. With reducing the width, the induced

bandgap 2D is becoming much more obvious in the vicinity

of the Dirac point. In the low energy range, it deviates from

its original linear relationship E ¼ �hvFjkj. Away from the

Dirac point (�hvFjkj � D), it is recovering back to the approx-

imately linear relation.

The wavevector ky is discrete due to quantum transver-

sal constriction in GNRs, and qn can be substituted for ky to

distinguish from the longitudinal one kx. The wave function

for Eq. (1) can be written as

073716-2 Xu et al. J. Appl. Phys. 112, 073716 (2012)



Wn;kx
ðrÞ ¼ vn;kx

ðyÞeikxx; (5)

where

vn;kx
ðyÞ ¼ an

1

zn;kx
cn;kx

0

0

0
BB@

1
CCAeiqny þ a0n

0

0

zn;kx
cn;kx

1

0
BB@

1
CCAeiqny

þ bn

zn;kx
cn;kx

1

0

0

0
BB@

1
CCAe�iqny þ b0n

0

0

1

zn;kx
cn;kx

0
BB@

1
CCAe�iqny;

(6)

where

zn;kx
¼ k

kx þ iqnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ q2
n

p ; cn;kx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ �h2v2

Fk2

q
� kDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ �h2v2
Fk2

q
þ kD

vuuut ; (7)

with the sign function k ¼ sgnðE� UÞ; k ¼ þ1 for the

conduction band and k ¼ �1 for the valence band. It is

noticeable that zn;kx
zn;�kx

¼ �1, which will be used in later

derivation. When D ¼ 0, the factor c becomes c ¼ 1, back to

the gapless case.

The transversal wavevector has been obtained for differ-

ent boundary conditions from Ref. 14 as

qn ¼ ðnþ aÞ p
W
; (8)

where a ¼ 1=2 for the infinite mass boundary condition

(smooth edge), a ¼ 0 for the metallic armchair edge, and

a ¼ 1=3 for semiconducting armchair case. The details of this

procedure can be found in supplementary material of Ref. 14.

B. Conductivity and Fano factor

The potential profile U(x) is assumed as

UðxÞ ¼ U1 ; x < 0 and x > L
Ug ; 0 � x � L:

�
(9)

To identify the longitudinal wavevector in different

regions, we denote it as kx in terminals and ~kx in the central

region. The transversal momentum qn is associated with var-

ious boundary conditions from Eq. (8), and it is assumed to

be the same in the whole system.

The transition between various states for incident elec-

tron with an energy E can be described by following wave-

functions as

W ¼
UL ¼ vn;kx

eikxx þ rnvn;�kx
e�ikxx ; x < 0

~U ¼ anvn; ~kx
ei ~kx x þ bnvn;� ~kx

e�i ~kx x ; 0 � x � L

UR ¼ tnvn;kx
eikxðx�LÞ ; x > L;

8><
>:

(10)

where rn and tn are reflection and transmission amplitude,

respectively, and an and bn can be obtained by the continuity

of W at x¼ 0 and x¼ L. The concrete process is as

following:

1

zn;kx
cn;kx

� �
þ rn

1

zn;�kx
cn;�kx

� �

¼ an
1

zn; ~kx
cn; ~kx

� �
þ bn

1

zn;� ~kx
cn;� ~kx

� �
; (11)

tn
1

zn;kx
cn;kx

� �
¼ an

1

zn; ~kx
cn; ~kx

� �
ei ~kx L

þ bn

1

zn;� ~kx
cn;� ~kx

� �
e�i ~kx L: (12)

Using zn;kx
zn;�kx

¼ �1 and cn;�kx
¼ cn;kx

, the transmis-

sion amplitude can be found as

FIG. 2. Dispersion relations of various graphene strip widths W¼ 10 nm,

W¼ 30 nm, W ¼ 102 nm, and W ¼ 103 nm, which are corresponding to the

solid curve, dashed curve, dotted curve, and dotted-dashed curve, respec-

tively. And the bandgap for the above GNRs are 276.2 meV, 92.07 meV,

27.62 meV, and 2.76 meV according to Eq. (2).

FIG. 1. Schematic diagram of a graphene strip, whose width and length are

W and L, respectively. The gate voltage Vg is used to tune the carrier type

and density in the strip.
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tn ¼
ckx

c ~kx
ð1þ z2

kx
Þð1þ z2

~kx
Þ

ðc ~kx
þ ckx

zkx
z ~kx
Þðckx

þ c ~kx
zkx

z ~kx
Þe�i ~kx L þ ðckx

z ~kx
� c ~kx

zkx
Þðc ~kx

z ~kx
� ckx

zkx
Þei ~kx L

; (13)

where the subindex n of zn;kx
and cn;kx

in Eq. (13) are omitted

for simplicity. Therefore, the transmission probability of the

n mode can be expressed as Tn ¼ jtnj2.

According to Landauer formula, one can find the con-

ductance and the Fano factor of this system as

G ¼ 4e2

h

XN�1

n¼0

Tn; (14)

F ¼

XN�1

n¼0

Tnð1� TnÞ

XN�1

n¼0

Tn

: (15)

Based on Eq. (14), the conductivity is defined as

r � G	 L=W.

III. NUMERICAL RESULTS AND DISCUSSIONS

The dispersion of various widths of GNRs is depicted in

Fig. 2. With reducing the width, the induced bandgap becomes

much more apparent. As for the aspect ratio, the length L is

assumed to be varying correspondingly with the width W

fixed, since the change of the width leads to the varying of the

induced bandgap. About the gapless case, the zerogap is set as

D ¼ 0, rather than calculated from Eq. (2) in this entire work,

since every width corresponds to a bandgap. According to

Eqs. (8) and (14), it is a multi-mode transport process for

GANRs. To fulfill the calculation accuracy, the truncation of

contributed modes is determined by N ¼ Intðk1W=pþ 1=2Þ,
where jU1j ¼ �hvFk1. The potential in two terminals is

assumed the same value U1 ¼ 1000 meV, and the other pa-

rameters have already been illustrated in the following text.

The impact of induced gaps on the multi-modes transport and

sub-Poissonian shot noise will be discussed in details.

A. Multi-mode transport

The influence of the induced bandgap on a single-mode

transmission probability for different boundary conditions is

shown in Fig. 3. It is well-known that the transversal wave-

vector qn is linear with the mode-index n from Eq. (8). Thus,

the energy threshold values for higher modes are increasing

correspondingly, such as T10 and T20 in Fig. 3. When the

bandgap is zero, the central region is completely transparent

for zero-mode (n¼ 0) transport of metallic armchair-edge

boundary ða ¼ 0Þ, as shown in Fig. 3(a), which corresponds

FIG. 3. The different modes transmission probability Tn versus incident energy E under various conditions (a) D ¼ 0; a ¼ 0, (b) D ¼ 0; a ¼ 1=3, (c)

D ¼ 6:87 meV; a ¼ 0, and (d) D ¼ 13:8 meV; a ¼ 0. The potential of the two terminals is assumed to be U1 ¼ 1000 meV, the gate voltage in the central

region is Ug ¼ 0, and the aspect ratio is W/L¼ 4. The widths of GNRs are the same 1000 nm in (a) and (b), and the widths are 200 nm and 100 nm in (c) and

(d), respectively.
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to the so-called “Klein tunneling”30 due to the chirality con-

servation (q0 ¼ 0). For the semiconductor edge ða ¼ 1=3Þ,
there is no Klein tunneling emerging in Fig. 3(b) because of

the minimal transversal momentum q0 ¼ p=3W. The induced

bandgap has made Klein tunneling of the metallic-edge disap-

pear, which can be seen in Figs. 3(c) and 3(d). Because the

dispersion of GANRs has deviated from the original linear

relationship, which can be seen from Fig. 2, therefore the car-

riers no longer obey the chirality conservation. The complete

transmission is becoming an oscillatory phenomenon, which

is related with the resonant tunneling as that in a semiconduc-

tor. In the low energy regime, the transmission probability of

low-modes is reduced by the bandgap, and the emergences of

high-modes are delayed due to the increased threshold values.

Besides, the energy spaces between adjacent resonant levels

are increasing as the width of GANRs decreases. Moreover,

the oscillating period is also becoming evidently larger from

Figs. 3(c) and 3(d), which is analogous to that in semiconduc-

tors. In other words, the bandgap makes the carriers in

GANRs behave like those in semiconductors. As for semicon-

ductor boundary ða ¼ 1=3Þ and smooth edge ða ¼ 1=2Þ, the

changes of transport properties by the bandgap are similar

with that of the metallic case, except for the disappear of the

Klein tunneling phenomenon of zero-mode. The bandgap

makes the transmission of each mode in GANRs less sensitive

than the gapless case.

According to Eq. (14), the summation over all modes

leads to the conductivity of the system. The conductivity

varying of the GANR with a metallic edge for different

bandgaps is given in Fig. 4. As discussed above, the trans-

mission probabilities of effective modes with contribution to

conductivity have been reduced by induced bandgaps. And

the energy thresholds of discrete modes increase with the

bandgap. Thus, the conductivity of GANRs with a bandgap

has been much suppressed, as shown by curves 1 and 2 in

Fig. 4. And the tiny oscillation of the curves originates from

the resonant tunneling of new opening channels, which can

be seen from Fig. 3. When the bandgap grows larger further,

the suppression of the conductivity is becoming more

obvious, as seen from the curve 3. Moreover, the conductiv-

ity oscillates more smoothly, since the energy space between

adjacent resonant levels becomes larger. The oscillation is

almost invisible in curve 3 of Fig. 4. Compared with the gap-

less GANRs, the same feature is that the conductivity with a

bandgap is roughly linear with the incident energy, owing to

the linear dependence of the new-opening mode level En on

index n.

B. Conductivity and Fano factor

When the Fermi level is at the Dirac point, the impact of

the bandgaps on the conductivity and Fano factor of GANRs

for smooth edge ða ¼ 0:5Þ and metallic boundary ða ¼ 0Þ is

depicted in Fig. 5. When there is no induced gaps(D ¼ 0),

for the low aspect ratio limit W=L! 0, the most exceptional

part of the metallic edge is that the absence of the 1/2 offset

in the transverse momentum qn leads to the transition from

insulating to metallic. Meanwhile, for the high limit

W=L!1, the edge has no effect on the conductivity ðr!
g0=pÞ and Fano factor ðF! 1=3Þ, as shown in Figs. 5(a) and

5(b), which is in excellent agreement with the results from

Eq. (16) in Ref. 14

Tn ¼
1

cosh2Lqn þ ðqn=k1Þ2sinh2Lqn

! 1

cosh2½pðnþ aÞL=W�
: (16)

The influence of induced bandgap on the conductivity

and shot noise is clearly distinguished, even for a subtle gap

(2D ¼ 11:04 meV) as presented in Figs. 5(c) and 5(d). The

most distinct change is that the properties of GANRs are in-

dependent on edge conditions. For the limit W=L! 0, the

conductivity and Fano factor of the metallic edge are

reversed completely. The original gapless system of the me-

tallic edge is analogous with a quantum point, with all chan-

nels open, and the Fano factor is zero as seen in Fig. 5(b).

After considering the bandgap, it is similar with a tunneling

junction, with low transmission channels, and the Fano fac-

tor becomes one as shown in Fig. 5(d). The induced bandgap

makes the properties no longer sensitive to the boundary

edge, as indicated from the almost coincident curves in Figs.

5(c) and 5(d). Moreover, for the high limit W=L!1, it

requires a larger aspect ratio than that of the gapless case for

the conductivity and Fano factor to achieve stationary val-

ues. These phenomena are much more obvious with the

reduction of GANRs width. Actually, it is similar with the

shot noise in Figs. 5(c) and 5(d) for the semiconducting

boundary edge a ¼ 1=3.

With a moderate aspect ratio fixed (W/L¼ 5), the mini-

mal conductivity and the maximal Fano factor for different

bandgaps at the Dirac point can be obtained by varying the

gate voltage, as shown in Fig. 6. For the zero-bandgap case,

the limiting characteristics of a short and wide strip

(W=L!1) agrees well with the formulas in Ref. 14

r! 4e2=hp; F! 1=3; (17)

FIG. 4. The dependence of conductivity r on incident energy E under vari-

ous bandgap for the metallic edge. The curves marked 1, 2, and 3 correspond

to different GNRs widths 1000 nm, 200 nm, and 100 nm. The other parame-

ters are the same as that in Fig. 3.
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as seen in Figs. 6(a) and 6(b). The behavior is associated with

the well-known minimal conductivity, which originates from

the evanescent transmission at the Dirac point in despite of

the carrier types and density. And this phenomenon is univer-

sal for the most general boundary condition at various edges

of the graphene strip. Taking the induced bandgap (D 6¼ 0)

into account, although the varying profile of conductivity and

shot noise at the Dirac point are almost alike with those of the

gapless case, the conductivity has shifted to a lower value

(r! 0:86	 4e2=hp) and the Fano factor has shifted to a

higher value (F! 0:44), as plotted in Figs. 6(c) and 6(d).

Actually, these results can be also derived in Figs. 5(c) and

5(d) with the fixed aspect ratio (W/L¼ 5). The Fano factor

values measured in experiment19 distribute between 0.35 and

0.38, a little higher than the theoretical prediction.14 The typi-

cal value 0.44 in our work is sort of higher than the experi-

mental value range due to the width difference between their

sample width W ¼ 2 lm and ours W¼ 500 nm. The induced

gap in the experiment is 2D ¼ 2:76 meV, much lower than

ours 2D ¼ 11:04 meV, then the impact of gaps on the shot

noise is smaller than our calculation. Thus our conclusion is

qualitatively consistent with the observed results in experi-

ment. The emergence of the bandgap, even with a tiny ampli-

tude, has reduced the minimal conductivity to a direction of

“off” state and enhanced the sub-Poissonian transport to a

Poisson process. It is easy to understand that the GANRs with

an energy gap become the analogues of semiconductors.

These changes are much more evident with reducing the

GANR width. The oscillation of the conductivity and Fano

factor in both high gate voltage sides indicates the jittering

motion of confined Dirac fermions, which is called

“Zitterbewegung,” a consequence of the interference of states

with positive and negative energy.14 The influence of gaps on

this property is relatively weak. The sub-Poissonian shot noise

at the Dirac point is independent of various boundary edges

regardless of the bandgap, as seen in Fig. 6.

The sub-Poissonian shot noise phenomenon in GANRs,

where the Fano factor is 1/3, originates from the evanescent

transmission of carriers at the charge-neutrality point (Dirac

point).14 The Fano factor value 1/3 also appears in disor-

dered metals, which is a consequence of classical diffusive

dynamics. Remarkably, the dynamical transport of an ideal

graphene strip is a ballistic process, and one can expect a

Poisson process with the corresponding Fano factor F¼ 1.

The observed value in experiment is a little higher than the

predicted 1/3.19 In our work, we could explain the measured

FIG. 5. The conductivity r and Fano factor F versus aspect ratio W/L for different bandgap conditions (D ¼ 0 for (a) and (b), D 6¼ 0 for (c) and (d)). The solid

lines and the dotted lines are corresponding to the smooth edge and metallic edge, respectively. The dashed line r ¼ 1 in (a) and (c), F ¼ 1/3 in (b) and (d) are

for eye guidance. The width of GNR is 500 nm, and the other parameters are the same as that in Fig. 3.
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higher Fano factor via the induced bandgap. The variance of

the shot noise can help us to extract the useful information

for logic devices characterization.

IV. CONCLUSION

In this work, we have investigated the influence of the

bandgap induced by transversal constriction on the sub-

Poissonian shot noise properties of GANRs. The bandgap

leads to the deviation from an ideally linear dispersion, and

then the transmission is suppressed due to the broken of chir-

ality conversation. Taking the bandgap into account, we

found that the minimal conductivity at the Dirac point

becomes more suppressed than that of the gapless case

4e2=ph, and the Fano factor becomes more enhanced than

the originally predicted value 1/3. The amplitudes of conduc-

tivity suppression and Fano factor enhancement are going to

become large when the width of GANRs decreases. The

bandgap can be used to explain the higher Fano factor

observed in experiment qualitatively as a correction. The

GANRs with gaps are becoming analogues of semiconduc-

tors, and the transition from the sub-Poissonian to a Poisso-

nian process is taking place gradually with reducing the

nanoribbon width. About the geometry of GANRs, for the

low aspect ratio limit, the bandgap makes the shot noise

properties at the Dirac point no longer sensitive to the bound-

ary edges. Especially, it has completely changed the features

of metallic-edge GANRs oppositely. For the high limit, the

aspect ratio required for the minimal conductivity and maxi-

mal Fano factor to achieve stationary values is increasing

obviously. These results can help us to understand the sub-

Poissonian shot noise and extract the useful transport infor-

mation of devices.
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FIG. 6. Fermi energy dependence of the conductivity r and Fano factor F with a fixed aspect ratio for different bandgap conditions (D ¼ 0 for (a) and (b), D 6¼
0 for (c) and (d)). The solid lines and the dotted lines are corresponding to the smooth edge and metallic edge, respectively. The dashed lines r ¼ 4e2=hp in

(a), F¼ 1/3 in (b), r ¼ 0:86	 4e2=hp in (c), and F¼ 0.44 in (d) are for eye guidance. The width of GNR is 500 nm, the aspect ratio is W/L¼ 5, and the other

parameters are the same as that in Fig. 3.
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