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Chalcogenide superlattices Sb2Te3–GeTe is a candidate for interfacial phase-change memory (iPCM) data storage
devices. By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together, we investigate
the ultrafast photoexcited carrier dynamics and current transients in Sb2Te3–GeTe superlattices. Sample orientation and
excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric, shift and injection currents
contribute to the THz generation in Sb2Te3–GeTe superlattices. By decreasing the thickness and increasing the number of
GeTe and Sb2Te3 layer, the interlayer coupling can be enhanced, which significantly reduces the contribution from circular
photo-galvanic effect (CPGE). A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of
∼ 1100 nm to ∼ 1400 nm further demonstrates a gapped state resulting from the interlayer coupling. These demonstrates
play an important role in the development of iPCM-based high-speed optoelectronic devices.

Keywords: Sb2Te3/GeTe superlattices, ultrafast carrier dynamics, interfacial phase change memory, THz
emission spectroscopy, transient reflectance spectroscopy
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1. Introduction
Chalcogenide superlattices Sb2Te3–GeTe, formed by al-

ternately stacking Sb2Te3 layers with GeTe layers, are widely
used in non-volatile data storage devices, such as interfacial
phase-change memory (iPCM). Compared to phase change
memories, the iPCM has the advantages of low switching
energy, high-density memory, and long write–erase cycle
lifetime.[1–6] Sb2Te3 is a typical three-dimensional topological
insulator, featuring nontrivial gapless surface states.[7] GeTe
is a narrow-bandgap semiconductor. It has been reported that
the Sb2Te3–GeTe superlattices with inverted-Petrov phase are
the Dirac semimetal.[8] The topological properties of Sb2Te3–
GeTe are related to the geometry of the superlattice and are in-
fluenced by the Te–Ge–Ge–Te building unit.[1,9–13] The elec-
tronic structure of Sb2Te3–GeTe superlattices can be modified
through applying electric fields or external stresses.[8,14] In ad-
dition, Sb2Te3–GeTe superlattices also exhibit the giant mag-
netoresistivity and multiferroic effects.[3,15]

Many optical measurements have been used to investigate
the opto-electronic properties of the Sb2Te3–GeTe superlat-
tices. For example, angle-resolved photoelectron spectroscopy

has been employed to investigate the band structure of GeSbTe
alloys.[16] Magneto-optical Kerr rotation and time-resolved
optical Kerr measurements have been used to study the Dirac
states and phase transition in Sb2Te3–GeTe.[17–19] Thermo-
reflectance measurement has been employed to investigate
the electrical and thermal transport characteristics of Sb2Te3–
GeTe superlattices.[20] Optical pump–optical probe measure-
ment has been utilized to probe the coherent phonon dynamics
in Sb2Te3–GeTe superlattices.[21] The terahertz (THz) electric
field has been used to induce the current signals in both multi-
layered Sb2Te3–GeTe and GeSbTe alloys.[22,23] We notice that
the multilayered Sb2Te3–GeTe has the ability to produce THz
radiation under optical excitation,[24] however, the mechanism
has not been investigated in detail, which determines the po-
tential applications of Sb2Te3–GeTe superlattices.

THz electromagnetic radiation has been used for broad-
band spectroscopic application in various fields.[25–27] On one
hand, since the nonequilibrium distribution of photoexcited
carriers causes the transient currents and subsequently gener-
ates the THz radiation,[28–30] THz emission spectroscopy has
been proven to be a good method for investigating the transient
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carrier transport properties in symmetry-broken materials,
such as ferromagnetic superlattices, transition metal dichalco-
genides, strongly correlated and topological materials.[31–34]

On the other hand, transient reflectance spectroscopy is a
powerful technique to investigate bandgap renormalization,
Pauli blocking and free carriers’ absorption, providing an un-
derstanding of excited-state carrier dynamics in topological
materials.[35,36]

In this paper, we combine THz emission spectroscopy
and transient reflectance spectroscopy to investigate the ultra-
fast current and carrier dynamics in Sb2Te3–GeTe superlat-
tices. Based on the incident angle, azimuth angle, and po-
larization dependences of THz emission measurements, we
find that the thermo-electric current generated by the ultra-
fast laser-induced temperature gradient is the dominating ul-
trafast currents in Sb2Te3–GeTe superlattices. We also observe
the shift current generated by the linear photo-galvanic effect
(LPGE) and the injection current generated by the circular
photo-galvanic effect (CPGE) in Sb2Te3–GeTe superlattices,
which depend on the topological state with spin–momentum
locking.[37–39] It can be found that, by decreasing the thick-
ness of GeTe and Sb2Te3 layers, and increasing the number
of GeTe and Sb2Te3 layers, the interlayer coupling can be en-
hanced, which significantly reduces the CPGE contribution.
Further, utilizing transient reflectance spectroscopy, a photo-
induced bleaching is observed at the wavelength of∼ 1100 nm
to ∼ 1400 nm, demonstrating a bandgap at ∼ 1.0 eV above
the Fermi level. The interlayer coupling can undermine the
topological state in Sb2Te3–GeTe superlattices. This explains
why the injection current induced by CPGE is negligible in
the multilayered Sb2Te3–GeTe sample. In this framework, the
ultrafast current and carrier dynamics of Sb2Te3–GeTe super-
lattices add an essential piece to the fundamental properties
and device applications of iPCM.

2. Sample preparation
Two types of Sb2Te3–GeTe samples were prepared in the

experiments, as depicted in Figs. 1(a) and 1(b) for superlat-
tices and bilayer samples, respectively. The molecular beam
epitaxy (MBE) has been used to deposit GeTe and Sb2Te3

films on freshly cleaved mica substrates with 〈001〉 orienta-
tion. The thickness of each layer for the two samples is given
in Figs. 1(a) and 1(b). We calculated the band structures of the
Sb2Te3GeTe superlattices by using a first-principles method
based on the density-functional theory (DFT).[40–43] As shown
in Fig. 1(c), without spin–orbit coupling (SOC), the Sb2Te3–
GeTe superlattices have a linear Diac-like energy band, similar
to the Dirac semimetal. However, in the same calculation with
SOC, the linear band opens and the bandgap appears at 0 eV
and ∼ 1.0 eV, as shown in Fig. 1(d).
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Fig. 1. The schematic diagram of (a) Sb2Te3–GeTe superlattices and
(b) Sb2Te3–GeTe bilayer by stacking Sb2Te3 layers with GeTe layers.
The calculated band structures of Sb2Te3–GeTe superlattices (c) without
SOC and (d) with SOC.

3. Experimental setup

Figure 2(a) shows the schematic of THz emission spec-
troscopy. A Ti:sapphire laser (Solstice Ace, Spectra-Physics
Inc) is used to generate laser pulses with a central wavelength
of 800 nm, a repetition rate of 1 kHz, and a pulse duration
of 35 fs. The output laser pulse is divided into pump and
probe beams. The Sb2Te3–GeTe sample is photoexcited by
the pump pulse. A half-wave plate (HWP) or a quarter-wave
plate (QWP) is used to modulate the polarization state of the
pump beam. The generated THz signal from the sample is
focused onto a 1 mm thick 〈110〉-oriented ZnTe crystal for
the electro–optical (EO) detection by a balanced photodetec-
tor. The emitted horizontally-polarized ETHz,x and vertically-
polarized ETHz,y of the THz electric field are obtained by a pair
of wire-grid polarizers.

In the transient reflectance spectroscopy, a Ti:sapphire
femtosecond laser (Astrella, Coherent Inc) is used to generate
laser pulses with a central wavelength of 800 nm, a repetition
rate of 1 kHz, and a pulse width of 100 fs. The output laser
pulse is split into two beams. One beam enters into an optical
parametric amplifier (OPerA Solo, Coherent Inc) to generate
different pump wavelengths. The other part of the pulse en-
ters into a transient reflectance spectrometer (Helios, Ultrafast
system). It is focused onto a sapphire plate to generate contin-
uous probe wavelength. The pump beam and the probe beam
are focused onto the sample at an incident angle of 54.7◦. The
probe beam, after being reflected by the sample, finally enters
into the optical fiber detection. The spectral information at dif-
ferent time delays can be obtained by changing the time delay
between the pump and the probe beams.
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4. Experimental data analysis

Figure 2(b) shows the typical ETHz,x from the Sb2Te3–
GeTe superlattices illuminated by linearly polarized laser
pulses at different incident angles θ = 0◦, +45◦ and −45◦ un-
der pump fluence of 0.8 mJ/cm2. The central frequency and
bandwidth of the spectrum are approximately 0.23 THz and
0.29 THz, similar to the observation of 20-layer Sb2Te3–GeTe
film by Makino et al.[24] If the surface depletion field was the
mechanism of THz emission, as it is perpendicular to the sam-
ple surface, when θ is reversed from +45◦ to −45◦, the polar-

ity of the THz pulse would be reversed. In addition, no THz
emission can be detected when the sample is excited at nor-
mal incidence. However, it can be found that the waveform
of the THz emission does not change when θ is changed from
+45◦ to −45◦. Our observation demonstrates that the photo-
induced ultrafast current follows parallel to the surface of the
Sb2Te3–GeTe superlattices. Thus, the surface depletion field
induced linear drift current can be excluded. Moreover, the
wavevector independent THz emission confirms that the pho-
ton drag effect would not be the dominant mechanism for the
THz emission in the Sb2Te3–GeTe superlattices.[37]
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Fig. 2. Diagram of THz emission in a transmission measurement. (b) THz emission waveforms measured at incident angles θ = 0◦, +45◦,−45◦.
Peak value of the horizontal component of THz emission as a function of (c) pump fluence and (d) azimuth angle ϕ . (e) The linearly polarized
THz emission measured at ϕ = 0◦, 90◦, 180◦, 270◦. (f) The linearly polarized THz emissions excited by left-handed, right-handed circularly and
linearly polarized pump pulses. In panels (c)–(f), θ = 0◦.

As shown in Fig. 2(c), the peak amplitude of THz radi-
ation ETHz,x increases linearly with increasing pump fluence,
indicating that the emitted THz signals are dominated by a
second-order nonlinear effect. Figure 2(d) plots the peak am-
plitude of ETHz,x as a function of azimuth angle ϕ , which ex-
hibits a simple one-fold symmetry. The polarity of the ETHz,x

reverses when the ϕ is changed by 180◦, which indicates that
the emitted THz pulse is highly directional. Figure 2(e) shows
that the polarization states of the emitted THz pulses rotate
following ϕ . This experimental result agrees well with the

cosine-like dependence of the peak amplitude (Fig. 2(d)). The
direction of the ultrafast photocurrent follows the azimuthal
angle ϕ of the Sb2Te3–GeTe superlattices. Figure 2(f) shows
the THz emission excited by different polarized pump beams.
The y-polarized THz electric field component is undetectable
compared to the x-polarized component, which indicates the
linearly polarized THz radiation. The polarization and inten-
sity are almost equal for linearly, left and right circularly po-
larized excitations.

Owing to the MBE-grown Sb2Te3–GeTe superlattices,
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such layered stacking is lacking the space-inversion sym-
metry. The optical transitions induced by linearly polar-
ized laser pulse give rise to a photocurrent in materials with
low spatial symmetry. Therefore, both linear and nonlinear
optical processes can induce ultrafast photocurrent for THz
emission.[44,45] The nonlinear photocurrent enables a probe of
topological state.[46,47] In order to elucidate the nonlinear op-
tical process of THz emission from the Sb2Te3–GeTe super-
lattices, we investigate the THz amplitude with respect to a
periodic polarization modulation of the pump pulse at the nor-
mal incidence (θ = 0◦). In this configuration, the photon-drag
THz emission mechanism can be nearly excluded.

Figure 3(a) shows the THz emissions from Sb2Te3–GeTe
superlattices for various linearly pump polarizations. The
dependences of the peak amplitude of THz emission from
Sb2Te3–GeTe superlattices and Sb2Te3–GeTe bilayer on the
linear-polarization angle β are shown in Figs. 3(b) and 3(c),
respectively. The polarization dependent peak amplitude of

the THz radiation can be fitted well by cos2β , which is con-
sist with the shift current mechanism.[37,39]
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Figure 4(a) shows the THz emissions from Sb2Te3–GeTe

superlattices and Sb2Te3–GeTe bilayer under various pump

polarizations tuned from linear to circular by rotating the QWP

from 0◦ to 360◦, at ϕ = 180◦ and θ = 0. In Figs. 4(b) and 4(d),

the pump polarization dependent THz peak amplitudes mea-

sured at t = 5.3 ps (orange circles) indicate a superposition of
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different processes, which can be fitted by the phenomenolog-
ical expression[45,48–50]

ETHz,x (α, t)

= Cx (t)sin(2α)+Lx(t)sin(4α +α0)+Dx(t), (1)

where α is the angle of the QWP. The first term represents
the helicity-dependent THz emission. The coefficient C(t)
parameterizes the injection current induced by circularly po-
larized light through CPGE, which is dependent on photoex-
cited spin dynamics and topological states.[51] The second
term describes the linear-polarization-dependent THz emis-
sion. The coefficient L(t) parameterizes the shift current in-
duced by linearly polarized light via LPGE. The third term
describes the polarization-independent THz emission, the co-
efficient D(t) represents ultrafast thermo-electric current due
to a laser-induced temperature gradient in the thermoelectric
materials.[45,52]

As shown in Figs. 4(b) and 4(d), the solid lines are the
fitting curve using Eq. (1), and the dashed and the dotted lines
indicate the L (t = 5.3 ps) and D (t = 5.3 ps), respectively.
The insets of Figs. 4(b) and 4(d) highlight the contributions of
C (t = 5.3 ps) following 2α . D (t = 5.3 ps) is unrelated to the
polarization of light, as shown by a large offset. This method
can be extended to the entire time-domain, ranging from 0 ps
to 13 ps. Figures 4(c) and 4(e) show the time-dependent pa-
rameters of C(t), L(t), and D(t) by fitting the amplitude of
ETHz,x (α, t) for Sb2Te3–GeTe superlattices and bilayer sam-
ple, respectively. We can distinguish different mechanisms of
the oscillating transient currents for THz emission. By inte-
grating the C(t), L(t), and D(t), the insets of Figs. 4(c) and 4(e)
show the proportion of C = 0.8%, L = 7.5%, and D = 91.7%
for Sb2Te3–GeTe superlattices and C = 5.4%, L = 20.1%, and
D = 74.5% for the bilayer sample.

It can be seen that D is much larger than C and L, indicat-
ing that the polarization-independent thermo-electric current
governs the THz radiation. LPGE generates a shift current dur-
ing the optical excitation between the initial and final states of
different charge centers, which has a geometrical origin that is
described by the Berry phase connection.[53,54] For the CPGE,
photons in circularly polarized light couple with the spin of
electrons by providing a defined angular momentum. The cou-
pling is strong in topological materials because of the spin–
momentum locking feature of topological state.[55] As a com-
parison, it can be found that C decreases from 5.4% (bilayer
sample) to 0.8% (multilayer superlattices), which indicates
that the larger interlayer coupling enables the Sb2Te3–GeTe
superlattices to present less topological state, which makes the
CPGE less observable. It is consistent with the observation
that difference of THz emission from Sb2Te3–GeTe superlat-
tices excited by left-handed and right-handed pump laser is
negligible in Fig. 2(f).

Finally, we perform the time-resolved reflectance spec-
troscopy to further investigate the relaxation dynamics of
excited-state carriers in Sb2Te3–GeTe superlattices. The laser
pulse with 800 nm serves as a pump. Figures 5(a) and 5(b)
depict the 2D contour plots of transient differential reflectance
(∆R) in the visible range of 450 nm–750 nm and the near-
infrared range of 850 nm–1550 nm. The x axis and y axis
show the probe wavelength and probe delay, respectively. Fig-
ure 5(c) shows the kinetic curves of ∆R(∆t) at various probe
wavelengths, the non-oscillatory carrier relaxation process is
superimposed on a coherent oscillation. A phenomenology
model can be used to fit the kinetic profiles

∆R(∆t) = a1 e−
∆t
t1 +b1 e−

∆t
t2 × cos(2π f ∆t +φ0)+ c1, (2)

where ∆t is the pump-to-probe time delay. The first term de-
scribes the relaxation of the excited carriers. t1 denotes the
decay time that characterizes the non-oscillatory carrier relax-
ation. The second term represents a damped coherent oscilla-
tion. f and t2 represent the frequency and decay time of the co-
herent oscillation, respectively. The fitting is given in Fig. 5(c).
The extracted t1 is much longer than the time window used.
The oscillation frequency locates in a range of ∼ 30–60 GHz,
as given in Fig. 5(c), which could be attributed to the coherent
acoustic phonon. In addition, the extracted t2 is in a range of
∼ 5 ps–10 ps.

As seen in Fig. 5(a), the positive ∆R represents the photo-
induced absorption (PIA), which covers the ranges of 450 nm–
750 nm and 850 nm–1600 nm. It signifies prominent optically
allowed transitions from the first valence band (VB1) to the
second conduction band (CB2) in the Sb2Te3–GeTe superlat-
tices, as shown in Fig. 5(d). In Fig. 5(b), a negative ∆R peak
in the near-infrared range (from ∼ 1100 nm to ∼ 1400 nm)
can be found, which demonstrates the transition from the first
gapped state (GS1) to the second gapped state (GS2), as shown
in Fig. 5(d). Upon photoexcitation from the ground state to
the excited state, the carriers are pumped into CB2 (∼ 1.4 eV).
And then, the carriers relax to the bottom of CB2 through inter-
band relaxation pathways, which causes an increase of the car-
rier population. The level of GS2 becomes a metastable state,
leading to the ground-state bleaching (GSB). Thus, the nega-
tive ∆R signal observed at∼ 1100 nm to∼ 1400 nm is aligned
with the energy level of GS2 about ∼ 1.0 eV. As proposed by
optical Kerr effect and electronic transport measurements, the
interlayer coupling between Sb2Te3 and GeTe layers within
the Sb2Te3–GeTe superlattices would undermine the topo-
logical state, especially in the interfaces.[18,56,57] It leads to
the broken linear band dispersion. And then the gapped state
between CB2 and VB2 appears, which is consistent with the
band structure calculation with SOC in Fig. 1(d). The gapped
state makes it easier for carrier population to accumulate in the
GS2, resulting in the appearance of photo-induced bleaching
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Fig. 5. (a) and (b) The 2D contour plots of ∆R in the Sb2Te3–GeTe superlattices excited with 1.55 eV, and probed in the visible and near-infrared
range. (c) The time-revolved ∆R at different probe wavelengths with fitting by Eq. (2). (d) The schematic diagram describes an optically allowed
transitions from VB1 to CB2 (red arrow) and from GS1 to GS2 (blue arrow), the energy band structure is based on calculation with SOC.

at ∼ 1.0 eV. The interlayer coupling changes the linear energy
band and generates the gapped state, thus the topological state
is expected to be suppressed largely, which explains why the
injection current via CPGE is negligible for THz emission in
Sb2Te3–GeTe superlattices.

5. Summary
In summary, we distinguish the different ultrafast pho-

tocurrents driven by thermoelectric effect, linear photo-
galvanic effect and circular photo-galvanic effect. The time-
resolved reflectance spectroscopy visualizes the excited-state
carrier relaxation of Sb2Te3–GeTe superlattices. The photo-

induced bleaching and negligible circular photo-galvanic ef-
fect in Sb2Te3–GeTe superlattices signify the gapped state
which may come from interlayer coupling. Our result could
play an important role in the development of iPCM-based
high-speed optoelectronic devices.
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