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Rapid Recognition of Glucose Molecular
Fingerprint Using Transmissive

Microfluidic Multiplexing
Metasensor
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Abstract—The multiplex metasurfaces are powerful for
terahertz (THz) fingerprint enhancement. However, current
technologies were still confronted with the problem of lim-
ited operating bandwidth. In this work, we introduced a
broadband frequency-agile metasensor based on guided
mode resonances (GMRs), which features a dual-adjustability
structure and has been demonstrated to enhance and dis-
tinguish broadband absorption fingerprint spectra. Such
frequency-agile dual adjustability can be achieved by both
the period of the grating and the thickness of GMR waveg-
uides integrated with a microfluidic system. This ultimately
results in the collection of multiple response spectra, creat-
ing a one-to-many correspondence between spatial informa-
tion and spectral information. Taking glucose molecule for
example, the enhancement factor can be achieved as high
as 304 times at the frequency range from 1.78 to 2.05 THz.
This multiplex microfluidic metasensor has the potential
for nondestructive analyte detection across a wide spectral
range.
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I. INTRODUCTION

TERAHERTZ (THz) wave range covers electromag-
netic wave frequency from 0.1 to 10 THz, and THz

time-domain spectroscopy has been highly active in areas,
such as imaging and rapid detection in recent years [1],
[2], [3], [4], [5]. The principle is to use the characteristic
vibration frequencies of molecules or macromolecules from
THz band to quickly identify the biomolecules. To enhance
light–matter interactions, numerous studies have employed
metallic metasensor to achieve a significant enhancement of
local electric fields [6], [7], [8], [9], [10], [11], [12]. For
instance, the WaveFlex biosensors have been proposed to
enhance light–matter interactions [13]. Optical fiber generally
utilizes different parameters, such as wavelength, amplitude,
and phase, in response to changes in refractive index (RI)
and temperature. It primarily operates on the idea of enhanc-
ing localized surface plasmon resonance (LSPR) events by
receiving additional evanescent waves. Based on the LSPR
principle, improvement of the structure through a diversified
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combination mechanism can achieve selective recognition.
Recently, Kumar et al. [14] achieved high-sensitivity detection
of ascorbic acid by utilizing photosensitive fiber-based sensing
probe. Zhang et al. [15] provided a systematic overview of
various SPR sensors. Pandey et al. [16] combined humanoid-
shaped tapered optical fiber to achieve the indirect excitation of
LSPR through evanescent field and detect different concentra-
tions of histamine. In addition, if the resonance and absorption
features happen to overlap in the spectrum, the near-field
enhancement created by the metasensor will facilitate the
interaction between molecules and resonators, resulting in
significant changes in resonance linewidth and intensity [17],
[18], [19], [20]. So, it provides an intuitive representation
of molecular characteristics. Metasensors designed based on
this principle have been widely applied in fields, such as
environmental analysis and biodetection [21], [22], [23].
Nevertheless, the actual situation is still far from ideal. The
resonance frequency of the unit is easily influenced by the
surrounding environment and leading to irregular frequency
drift, which causes a mismatch in the designed overlap [24].
Simultaneously, relying on a single characteristic fingerprint
for the detection of analytes may lead to a higher occurrence
of error. A recently emerged broadband absorption spectrum
enhancement strategy based on multiplexing technique can
be used to address this issue. The multiplexing technique
is a method that detects analytes at the sensor surface by
detecting the changes in electric field intensity. In this operat-
ing mechanism, two general methods are employed to obtain
a range of distinct resonant peaks, thereby enhancing the
interaction between electromagnetic waves and trace-level
samples in the broadband frequency range. One approach
adjusts the geometric parameters of the metasurface to create
multiple unit cell structures, thereby forming a metasurface
capable of generating a series of distinct resonant peaks [25].
Another approach involves externally manipulating metasur-
face under artificial conditions to obtain a resonant peak
range within the metasurface composed of the same unit
cell structure. For instance, this can be achieved by using
graphene as a medium for electrode modulation [26]. However,
the fabrication and manipulation graphene-based metasensors
are huge challenges. Some reflective multiplex schemes are
also achieved by adjusting the incident angle to alter phase
conditions [27], [28]. While the reflective metasensors exhibit
excellent performance, they have certain limitations in practi-
cal applications. For instance, due to the spatial overlap of the
illumination and collection optical paths, the oblique incidence
is usually preferred over normal incidence. In addition, the
inevitable manual error makes the precise regulation of the
incidence angle still a major challenge, which prevents the
reliability and accuracy of the integration of THz systems.
Moreover, ON-chip integration of the sensors used for detec-
tion tends to favor the transmissive version of devices [29].

Here, we developed an ultrabroadband frequency-
multiplexed metasensor based on guided mode resonan-
ces (GMRs), which combines the periodic structure of the
grating with the medium thickness adjustment mechanism
of the microfluidic system to cover broadband frequency
range. The multiplexing metasensors were investigated based

Fig. 1. (a) Schematic of the thickness-multiplexed transmissive grating.
A = 140 µm, w = 1 µm, h1 = A/3, h2 = A/5, and hs = 2A/3. (b) Transmi-
ssion spectra of grating without the analyte in the range of 1–2 THz.
(c) Electric field distribution of grating single-period unit at three reso-
nance peaks.

on frequency-domain finite-element simulation. GMR is a
physical effect that occurs in a grating-waveguide interaction
structure [30], [31]. It offers a high transmittance and high-Q
factor, which ensures trace molecular fingerprint detection in
the wide THz frequency range [32], [33], [34], [35], [36]. The
resonance frequency is highly related to the period of GMR
metagrating. In addition, the integrated microfluidic is also
introduced in GMR guiding layer to achieve frequency-agile
metasensor to further expand operation frequency range.
By using such active frequency-agile regulation techniques,
the unique glucose molecule fingerprint with thickness
of 1 µm can be amplified by 304 times with the range
of 1.78–2.05 THz. Recently, Lakshmi et al. [37] proposed
a glucose monitoring pressure sensor that detects glucose
concentration through the resistance changes induced by
pressure. This method is particularly suitable for complex
scenarios, such as wearable devices. The structural approach
mentioned significantly improves the accuracy and stability
during the detection process. However, there are still some
information of glucose fingerprint in THz range. The THz
approach in this manuscript may provide complementary
methods to analytical approaches proposed in [37]. This
metasensor has also the potential approach for versatile
miniaturized THz spectroscopy.

II. DESIGN AND METHOD

A. Metasensor Design
The schematic of the proposed transmissive metasen-

sor integrated microfluidic for multiplexing spectral sig-
nals was shown in Fig. 1(a). Here, h1 and hs denote
the thickness of polymethylpentene (TPX) and polyethy-
lene (HDPE), respectively. The microfluidic channel height h2
can be tuned by micrometer screw (see Section I, Sup-
porting Information). Hexadecane fluid is selected due to
nearly frequency-independent refractive indices in the THz
range [33]. Since materials (TPX, hexadecane, and HDPE)
are used to suppress the transmission loss of THz waves, the
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imaginary parts of materials are ignored, and the permittivity
of TPX, hexadecane, and HDPE are ε1 = 1.462, ε2 = 1.4282,
and εs = 1.62, respectively [38], [39], [40].

As we know, GMR is caused by the resonant coupling
of diffracted light by metal gratings and guided modes in
a waveguide, which shows high-Q spectral response [41].
In order to analyze high-Q GMR modes, we perform 2-D
optical simulation based on the frequency-domain finite-
element method by using the commercial software COMSOL
Multiphysics [42]. The unit cell of structure is adopted with
periodic Floquet boundary conditions. The input THz wave is
TE mode, which propagates through the grating in normal
incidence [31]. The transition boundary condition is used
for the aluminum layer and analytical sample. The simula-
tion narrowband transmission spectra are shown in Fig. 1(b).
There are three resonance peaks in the frequency range
from 1 to 2 THz. The peak transmission is higher than 0.9.
Fig. 1(c) shows the distribution of electric field intensity at
three peak locations. Compared with the electric field of
peak 1 and peak 3, most field intensity is localized inside
substrates; electric field energy is localized around TPX cap
layer as well as the channel. Since the analytes are covered
on the cap (see Section I, Supporting Information), resonance
peak 2 may have higher figure of merit (FoM) due to a
large overlap with the analytes. The Q factor for peak 2 is
over 200, and the associated FoM is 212.8. Such features
would have the potential to facilitate the sensing of broadband
molecular fingerprints. To demonstrate how the liquid in
microfluidic channel has influence the transmission resonance,
the transmission spectra for a homologous series of linear
chain hydrocarbons were calculated and shown in Section II,
Supporting Information. The RI difference between liquid in
microfluidic layer and TPX layer (1n) only results in the
resonance frequency shift and does not affect the distortion
of resonance profile. The effects of structural parameter (w)

of the transmissive metasensors were also investigated in detail
in Section I, Supporting Information. In general, a structure
with a small slit (w) provides a distinct higher Q transmission
peak. In this work, we chose w = 1 µm, and the duty cycle
is 1/140.

B. Microfluidic Thickness and Structural
Period Multiplexing

The reconfigurable properties of GMRs for the metasensor
are enabled by manipulating two physical factors, including
the grating period and microfluidic channel thickness. For
each factor, we investigate the multiplexed mechanism. In the
discussion, we adopt 1n = 0.032 (hexadecane fluid). We first
focus on the thickness of microfluidic channel in the metasen-
sor. According to the eigenvalue equation of the modulated
guided mode for TE polarization

tan (kd) =
k (γ + δ)

k2 − γ δ
(1)

where d is the thickness of the microfluidic layer, k =

(ε2k2
− β2)

(1/2), γ = (β2
− ε1k2)

(1/2), and δ = (β2
−

εsk2)(1/2). It reveals that the microfluidic thickness condition
is involved in influencing the resonant behavior of the GMR

Fig. 2. (a) Normalized transmission spectra of the unit structure.
(b) Corresponding tips of the resonance shift as a function of gradual ∆.
(c) Numerically simulated metasensor transmission spectra for different
values of structure period A. (d) Central resonance frequency with
respect to the grating period A.

waveguide with the propagation constant β. According to (1),
the thickness of the microfluidic layer plays an important role
in controlling the resonance frequencies of GMRs [43]. The
schematic of the principle is shown in the inset of Fig. 2(a).
The active control of resonance frequency of GMR mode is
achieved by varying the thickness of the microfluidic system.
For instance, when we tune the thickness from 10 to 45 µm,
the normalized transmission peak shifts to the low-frequency
range and Q factors are in the range from 204.6 to 283.86,
as observed in Fig. 2(a). Fig. 2(b) shows the relationship
between resonance frequency f0 and thickness difference 1.
The results demonstrate an approximately linear relationship
between the frequency shift and 1 with thickness of microflu-
idic system and a slope of 1.66 GHz/µm, and the fitting
equation is y = −1.66x + 2.05883. Therefore, we can use
this linear fitting equation to determine the position of the
sensor resonance frequency by varying 1. Considering that
the resolution of micrometer is 10 µm, the spectral resolution
can achieve 16.6 GHz, which is sufficient to multiplexing
detection.

We next study another scheme of multiplexed GMRs by
tuning the period (A) of metagrating with certain duty cycle.
The structure period matching condition can be expressed as
follows [44]:

β = k
(

√
ε2

ic
f0 A

)
(2)

where A is the metagrating period, c is the vacuum light
speed, f0 is the peak frequency, and i is the diffraction order
(+1 or −1). When the parameters of the grating structure
meet this condition, the GMRs can be produced. For instance,
if A is varied from 100 to 160 µm, the structure-resolved trans-
mission spectra of the metasensor without analyte coating are
plotted in Fig. 2(c), which can support the multiplexed GMRs
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Fig. 3. (a) Regionalized metasurface composed of a microfluidic
channel and different period gratings. Different unit areas correspond
to unit response. (b) Periodic dimensions of the structure. Designed
geometrical parameters are A = 110, 113, 116, 119, 121, and 123 µm,
respectively. (c) Simulated normalized transmission spectra for each
value of A with the gradient corresponding thickness of microfluidic
channel are arranged to cover the continuous spectrum.

and cover a specific wide THz band. As shown in Fig. 2(d),
we plot the resonance frequency as a function of the structure
period. We theoretically validate the period A using (2), and
it demonstrates good consistency with the simulation results.
The fitting equation for this relationship is y = 208.63x−0.986.
So, the grating dimensions can be optimized for operation at
the specific working frequency by using this fitting equation.
Such feature contributes to extend the operating range of GMR
thickness-multiplexed frequency-agile metasensor.

We continue to evaluate the performance of the two sets
of multiplexed GMR-based signals by simultaneously tuning
period A (the duty cycle maintains 1/140) and h2. Here, the
unit arrays of different periods with the microfluidic system are
used to constitute the metasensor, as shown in Fig. 3(a). This
design assigns each unit area to its specific responsive range,
and the responsive ranges of adjacent units are independent
and converge, forming a one-to-many mapping between spatial

Fig. 4. (a) Schematic of the proposed metasensor with the analyze
covered on the TPX surface. (b) Normalized transmission spectra in
the absence of glucose with dual parameters variations. The variation
periods of the gratings constituting the grating are A = 110, 113, 116,
119, 121, and 123 µm, respectively. Normalized transmission fingerprint
retrieval mapping in the presence of 1 µm: (c) glucose and (e) D-ribose.
(d) Glucose and (f) D-ribose absorption fingerprint with (red solid line)
and without grating (black dashed line) were compared by 300 times
magnification.

and spectral information. The relationship between the number
of regions and grating periods is shown in Fig. 3(b). As men-
tioned above, the change of microfluidic system thickness can
promote the adjustment of resonance frequency. The simulated
transmission spectra of the metagrating structures in six exem-
plary unit areas with a varying A are shown in Fig. 3(c), which
achieves the linear control of resonance frequency shift and
covers the spectral range from 1.78 to 2.05 THz. The excellent
performance lays the foundation for molecular fingerprint
spectrum detection. Our design can be easily extended to larger
spectral regions by changing the period parameter A with large
gradients and fine-tuning the thickness of the microfluidic
layer.

III. ENHANCEMENT OF GLUCOSE FINGERPRINT

Glucose is a commonly used analyte in the field of detection
and exhibits multiple distinct absorption peak features within
the range of 1–2 THz [43]. The Drude–Lorentz dispersion
model as the dielectric function of glucose is adopted as
follows [43]:

ε = ε∞ +

∑M

j=1

f jω
2
P

ω2
0 j − ω2 + i0 jω

(3)

where m is the number of oscillators; ω0 j is the resonance fre-
quency, which determines the material’s response to a specific
frequency; ωp is the plasma frequency, which determines the
contribution of free charge carriers to the optical properties;
f j is the oscillator strength; ε∞ is the relative permittivity
with a high frequency; and 0 is the damping in time. We illus-
trate molecular fingerprint detection by covering glucose film
with 1 µm on the TPX layer [Fig. 4(a)] and utilize (3) to
express the properties of molecules at 1.811 and 1.996 THz.
The fingerprint enhancement capability can be obtained by
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TABLE I
COMPARISON RESULTS OF THE DESIGNED ENHANCING METHOD HERE WITH THE SIMILAR RESULTS

calculating the transmission intensities of series of transmis-
sion spectra. The normalized transmission spectra before and
after glucose physisorption are shown in the up and down
panels of Fig. 4(b) and (c), respectively. The normalized
transmission spectra have an obvious attenuation caused by the
absorption characteristics of glucose [Fig. 4(c)]. According to
Lambert–Beer law, the absorbance signal can be defined as
AS = −log10(Tg/T0), where T0 and Tg are the envelope
of peak transmissivity before and after glucose absorp-
tion, respectively. The absorption characteristics of glucose
molecules are revealed by calculation the absorbance sig-
nal AS, as shown in Fig. 4(d), which is in good agreement with
the absorption characteristics exhibited on the HDPE substrate
without the grating structure. The fingerprint absorptance is
boosted nearly 304 times. An evaluation of sensitivity and limit
of detection has to be demonstrated in Section III, Supporting
Information. The results for D-ribose with absorption finger-
print spectra in the range of 1.7–2.1 THz are also presented
in Fig. 4(e) and (f). D-ribose, a common pharmaceutical
intermediate used in the production of a variety of nucleic
acid drugs, exhibits a distinct absorption fingerprint spectrum
in the 1.7–2.1-THz range [45]. The thicknesses of glucose
and D-ribose are both 1 µm. The proposed metagrating in this
work has successfully generated accurate enhanced absorption
fingerprint spectra for D-ribose and glucose, resulting in the
enhanced absorption fingerprint spectra for trace substances.
The baseline of transmission spectra in the absence of analytes
is about 0.05. When analyte is covered on the TPX sur-
face, the normalized transmission fingerprint retrieval mapping
in the presence of 1-µm glucose and D-ribose can still above
the baseline and can be observed clearly (see Section IV,
Supporting Information). We also note that variations in the
grating period A and microfluidic layer variations 1 will affect
thickness sensitivity (see Section 5, Supporting Information).

Table I provides a multiplexing performance comparison
between previous works and this work. The enhancement
factor is defined as EF = AS/AS0, where AS and AS0 refer
to the absorbance of trace analyte on the metasensor and
unpatterned sensor, respectively. The proposed microfluidic
frequency-agile metasensor combined with geometric period
multiplexing achieves a maximum enhancement factor of

approximately 304 times at the absorption peak of the sample
material, indicating that the dual-adjustability frequency-agile
metasensor exhibits superior performance in detecting trace
analytes and can be utilized for detecting trace analytes in
the THz range.

IV. CONCLUSION

We have presented frequency-agile thickness and period
multiplex THz molecular fingerprint metasensor based on
GMR, which can significantly extend the operational band-
width of the detection range. By employing dual adjustability,
the metagrating and microfluidic system are combined to
establish a one-to-many mapping relationship between spatial
and spectral information. This ultimately can cover the THz
fingerprint range. As long as the resonance frequency of
the analyte achieves in the frequency-agile coverage range,
the spectral fingerprint detection can be greatly improved.
Furthermore, we can achieve the ability to specific recog-
nition of analytes by expanding frequency-agile coverage
range to fingerprint spectra. The simultaneously microfluidic
thickness and structural periods multiplexing configuration is
able to deliver potential applications in detecting molecular
interactions with high enhancement. The broadband THz
fingerprint spectrum obtained by this method will open up
a new idea for the convenience of broadband THz func-
tional devices. We note that there still exist some limitations.
Multiplexing technology cannot be excited for the coherent
coupling of a broadband mode of the metasurface to a narrow-
band absorption line/resonance of analyte. More recently, the
absorption-induced transparency (AIT) can also achieve THz
trace molecular fingerprint sensing [46]. The most intriguing
characteristic of AIT is that the transmission peak, in the
combined metasurface device with analyte system, appears at
the spectral position where the bare analyte presents resonant
absorption. Combining the AIT effect with multiplexing may
improve such limitation for trace THz molecular fingerprint
sensing [21].
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