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A B S T R A C T   

Panax notoginseng (P. notoginseng), a Chinese herb containing various saponins, benefits immune system in 
medicines development, which from Wenshan (authentic cultivation) is often counterfeited by others for large 
demand and limited supply. Here, we proposed a method for identifying P. notoginseng origin combining ter
ahertz (THz) precision spectroscopy and neural network. Based on the comparative analysis of four qualitative 
identification methods, we chose high-performance liquid chromatography (HPLC) and THz spectroscopy to 
detect 252 samples from five origins. After classifications using Convolutional Neural Networks (CNNs) model, 
we found that the performance of THz spectra was superior to that of HPLC. The underlying mechanism is that 
there are clear nonlinear relations among the THz spectra and the origins due to the wide spectra and multi- 
parameter characteristics, which makes the accuracy of five-classification origin identification up to 97.62%. 
This study realizes the rapid, non-destructive and accurate identification of P. notoginseng origin, providing a 
practical reference for herbal medicine.   

1. Introduction 

Panax notoginseng (P. notoginseng) is a perennial herb of the family 
Araliaceae, mainly produced in Yunnan Province, China [1]. As a 
traditional precious Chinese medicinal material, P. notoginseng exerts 
significant positive effects on the human cardiovascular and immune 
systems [2,3]. P. notoginseng contains various bioactive components, 
including saponins [4–7], flavonoids [8], amino acids [3], poly
saccharides [9], fatty acids [10], peptides [3], etc. Among them, sapo
nins are the main active constituents [11], with ginsenoside Rb1 
(content 30–36% of saponins), ginsenoside Rg1 (content 20–40% of 
saponins), and notoginsenoside R1 (content 7–10% of saponins) being 
the standardized compounds used for evaluating the quality of 
P. notoginseng. Modern pharmacological research validates the anti
cancer, antitumor, anti-inflammatory, and hypoglycemic effects of sa
ponins [12–15]. The accumulation of saponins in P. notoginseng is highly 
susceptible to geographical and climatic influences, demanding strin
gent temperature, humidity, and soil requirements. Therefore, 

P. notoginseng cultivated in diverse geographical environments exhibits 
varying quality attributes. Notably, the saponins content of 
P. notoginseng produced in Wenshan Autonomous Prefecture (Wenshan) 
of Yunnan Province is much higher than that in Kunming and Yuxi city 
[16]. Therefore, the P. Notoginseng produced in Wenshan is also called 
the geological authentic cultivation (Daodi in Chinese). However, due to 
problems such as continuous cropping obstacles [17] and rampant dis
eases [18], the yield of P. Notoginseng in Wenshan was insufficient, 
which led to the problem of origin falsification. 

Traditional methods for P. notoginseng identification mainly involve 
morphological and microscopic identification. Morphological identifi
cation relies on visual observation, tactile examination, taste, and ol
factory perception to discern the shape, size, surface features, and aroma 
of the herb. This method requires substantial experience and is limited to 
the original state of herb. However, when the herb is processed into 
slices or powders, they lose essential morphological characteristics, 
limiting the identification capability of this method [19]. Microscopic 
identification is to analyze and identify the tissue structure, cell 
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morphology, and intracellular components of herb. It is suitable for 
identifying powdered materials. However, microscopic features of herbs 
within the same genus can be similar, making it difficult to identify them 
[20]. In modern times, high performance liquid chromatography (HPLC) 
is often used for qualitative identification and quantitative analysis of 
herbal medicine [21]. HPLC method has very high accuracy, but it also 
has many shortcomings such as lengthy analysis time, high equipment 
cost, complex operation, frequent maintenance requirements. Zhou 
et al. [22] were able to identify the origin of P. notoginseng samples by 
combining Fourier transform mid-infrared (FT-MIR) and near infrared 
(NIR) spectroscopy. Although the origin identification results could 
reach 95.6%, it required the use of two spectroscopic techniques, which 
were limited to the detection of surface substances. Zhang et al. [23] 
employed terahertz technology and the whale optimization algorithm to 
identify the production origins of P. notoginseng. Although they achieved 
an accuracy rate of 98.44%, the samples were collected from four 
provinces (Guizhou, Hunan, Guangxi and Yunnan) in China, and the 
analysis was focused on the low-frequency band, resulting in limited 
geographical precision and reference. The rapid and precise identifica
tion of the origin of P. notoginseng has always been a difficulty in this 
field. Hence, researchers have been actively seeking a more efficient 
solution. 

Terahertz (THz) waves refer to electromagnetic waves with a 
wavelength of 0.3–3.0 mm. Compared with other wavebands, THz 
waves offer numerous advantages for substance detection. 1) Finger
print spectroscopy: When THz waves are transmitted through 
biochemical substances, resonance absorption occurs if the molecular 
vibration and rotation frequencies coincide with certain terahertz fre
quencies, forming a unique fingerprint spectrum. This characteristic has 
made significant achievements in the field of biomedical detection 
[24–35]. 2) Non-destructive detection: operating at millielectron volt 
energy levels, THz waves do not induce ionization or disrupt the 
intrinsic properties of the detected substances, making them ideal for 
physical probing [36]. 3) Transient nature: typical THz pulses exhibit 
picosecond-level pulse widths, enabling the display of material changes 
and dynamic processes at the picosecond level [37]. Therefore, 
compared to conventional detection methods, THz spectroscopy has 
great potential in accurately identifying the properties and origin of 
P. notoginseng. 

In this paper, we aimed to achieve accurate and interpretable iden
tification of P. notoginseng from different origins using terahertz preci
sion spectroscopy combined with neural network algorithms. Firstly, 
HPLC, ultraviolet (UV), Raman and terahertz spectroscopy were 
compared and analyzed for the identification of P. notoginseng saponins. 
In addition, we performed HPLC and THz detection on 252 P. notoginseng 
samples from five different origins and constructed a Convolutional 
Neural Networks (CNNs) model to train the data. Binary classification of 
P. notoginseng from Wenshan and other origins was performed based on 
HPLC and THz spectra, and then five-classification of P. notoginseng from 
five origins (Wenshan, Chuxiong, Honghe, Kunming and Qujing) in 
Yunnan was performed. Furthermore, we analyzed the importance of 
frequency bands using the Permutation Variable Importance (PVI) 
method to find the nonlinear relations among THz spectra and P. 
notoginseng origins, and then extracted additional identification infor
mation from the THz spectra into CNNs, constructing the Feature 
Enhancement Convolutional Neural Networks (FE-CNNs) model for five- 
classification origin identification. 

2. Materials and methods 

2.1. Experimental materials 

We purchased Ginsenoside R1 (>98%, CAS: 80,418-24-2), ginseno
side Rb1 (>98%, CAS: 41,753-43-9) and ginsenoside Rg1 (>98%, CAS: 
22,427-39-0) from PureChem Standard in Chengdu, China, and Cyclic 
Olefin Copolymer (COC) powder from Sigma-Aldrich in Shanghai, China. 

In addition, we used 8 batches of different P. notoginseng produced in 
Wenshan Autonomous Prefecture, Chuxiong City, Kunming City, Qujing 
City, and Honghe Autonomous Prefecture in Yunnan Province, China, 
which were used in the form of block roots. No further purification was 
performed on the samples. 

2.2. Sample preparation 

For the THz spectroscopy analysis, we used the tablet pressing 
method, which needs grinding and sieving before tablet pressing. Firstly, 
P. notoginseng samples were ground into powder for 3 min at a vibration 
frequency of 90 Hz by MM400 ball mill (Retsch, Germany). The 
powdered samples with a particle size of 40 μm were kept dry under an 
infrared lamp. After being sieved, they were mixed in an agate vessel 
with COC powder, which has extremely low loss for THz frequency 
signals [38]. Samples were then pressed into 0.7 mm thick and 13 mm 
diameter tablets by a tablet machine with 8 tons of pressure. 

For the HPLC Analysis, the dried P. notoginseng powder (0.6 g) was 
added to a 10 mL round-bottomed flask followed by 50 mL methanol 
(99.99%, CAS: 67-56-1). The mixture then was incubated overnight. The 
sample was refluxed in a water bath at 80 ◦C for 2 h, cooled, weighed, 
and made up the lost weight with methanol. The mixture was then 
shaken and strained to get the filtrate. 

For UV spectroscopy and Raman spectroscopy, the milled sample 
powder was mixed with COC and pressed into 0.7 mm thick and 13 mm 
diameter tablets by a tablet machine with 8 tons of pressure. 

2.3. Experimental instruments 

The equipment for THz spectroscopy analysis is Fourier transform 
infrared spectrometer (FTIR vectex80v, Bruker Optics). The detector is a 
deuterated L-alanine triglycine sulfate detector. The far-infrared (IR) 
light source is a self-cooled mercury lamp. The effective coverage of the 
spectral region is 30–680 cm− 1, whose range is 1.5–16 THz and signal- 
noise rate is better than 10,000: 1. The resolution is 2 cm− 1, the scanning 
times and speed is 128 s and 5 kHz. In order to minimize the impact of 
water vapor during the experiment, the measurement of all spectra is 
conducted under vacuum conditions at room temperature (~22 ◦C). 

The equipment for HPLC analysis is Agilent 1200 high-performance 
liquid chromatography (MA, USA). The reagents used is methanol 
(99.99%, CAS: 67-56-1), ultrapure water (Milli-Q50 SP pure water sys
tem) and others (analytic pure). 

The equipment for Ultraviolet–Visible spectroscopy (UV-VIS) anal
ysis is recorded using a Lambda 1050 spectrophotometer (PerkinElmer, 
USA). The range and the accuracy of wavelength is 200 nm–400 nm and 
±1 nm. 

The equipment for Raman analysis is LabRAM HR Evolution, 
(HORIBA, Japan), The wavelength of the laser source is 532 nm. The 
spectral region is 200–1800 cm− 1. 

2.4. Data processing and neural network 

2.4.1. Data processing 
To bolster the network’s generalization ability and achieve the pre

cise classification of spectra collected in practical scenarios, we applied 
ten distinct sets of noise to each sample in the input spectrum data, 
creating 2520 new spectra from the original 252 samples. This approach 
aims to train the model to withstand noise, intensify the complexity of 
network training, and induce a certain regularization effect. 

Subsequently, 2520 spectra are randomly scrambled as a training set, 
with 10% as a validation set. The training and validation datasets are 
independent and drawn from the same distribution. 

By employing this methodology, our model is poised to exhibit 
greater robustness and improved generalization, enabling it to effec
tively handle noisy spectra commonly encountered in practical 
scenarios. 
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2.4.2. Z-score standardization 
In order to address the issue of varying numerical ranges and units 

among different features, which may lead to certain features dominating 
the model training process, we employ the z-score normalization tech
nique on the input data. This normalization method allows us to bring all 
features to a similar scale, thereby avoiding undue influence from spe
cific features and facilitating a more comprehensive exploration of inter- 
feature relations. 

The z-score normalization involves subtracting the mean and 
dividing by the standard deviation for each data point along rows, col
umns, or other attributes. The resulting transformation ensures that all 
data for each attribute or column is centered around zero and has a 
variance of 1. The input spectra x1, x2, …, xn are subjected to this 
transformation as shown in the following equation: 

yi =
xi-x

s
(1)  

In this equation x = 1
n
∑n

i=1xi, s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n− 1
∑n

i=1(xi − x)2
√

, y1, y2, …, yn 

represent the standardized spectra after normalization. The resulting 
transformation ensures that all data for each attribute or column is 
centered around zero and has a variance of 1. This normalization step is 
instrumental in promoting a more balanced and effective learning of the 
interrelations among features, ultimately leading to improved model 
performance and better generalization capabilities. 

2.4.3. Convolutional Neural Networks 
CNNs have gained extensive utilization across diverse domains, 

including data classification, image recognition, and natural language 
processing, rendering them an indispensable instrument [39–44]. Their 
salient attribute lies in their capacity to learn and extract features from 
input data, which has culminated in remarkable achievements in tasks 
such as classification and regression. Here, we use 1 dCNN architecture 
to classify P. notoginseng Origin. 

2.4.4. Permutation variable importance 
PVI [45] is a feature selection technique employed to evaluate the 

significance of each feature in a model. Its underlying concept involves 
randomizing the values of each feature and subsequently assessing the 
model’s performance based on the shuffled feature set. When shuffling a 
feature’s values results in an increase in model error, the feature is 
deemed “important.’ This approach aids in quantifying the impact of 
each feature on the model’s performance, enabling the elimination of 
irrelevant features and facilitating the development of interpretable 
neural networks. As a result, it allows for the explanation and optimi
zation of intricate models. Hence, in order to improve the accuracy of 
the model, we learn the nonlinear relations between dataset and origins 
using PVI. 

2.4.5. Evaluation index 
The common evaluation metrics for neural networks include Accu

racy, Precision, and Recall. These metrics offer different aspects of the 
model’s performance in a classification task. 

Accuracy is a prevalent classification metric that represents the 
proportion of correctly classified samples among all samples. It is 
calculated by dividing the number of correct predictions by the total 
number of samples, as shown in the following formula: 

Accuracy =
TP + TN

TP + TN + FP + FN
(2)  

where, TP (True Positive) is the number of instances correctly predicted 
as positive. FN (False Negative) is the number of instances positive but 
predicted as negative. FP (False Positive) is the number of instances 
negative but predicted as positive. TN (True Negative) is the number of 
instances correctly predicted as negative. Accuracy provides an overall 
assessment of the model’s classification performance. However, it may 

be biased in the case of imbalanced class distributions. 
Precision focuses on the accuracy of the model’s positive predictions. 

It measures the proportion of true positive predictions among all posi
tive predictions, helping us understand the reliability of the model in 
correctly detecting samples belonging to a particular class. The calcu
lation formula for Precision is as follows: 

Precision =
TP

TP + FP
(3) 

Recall, also known as sensitivity or true positive rate, measures the 
proportion of correctly predicted positive samples among all actual 
positive samples. It helps us understand the model’s ability to correctly 
detect samples from a specific class. The calculation formula for Recall is 
as follows: 

Recall =
TP

TP + FN
(4)  

3. Results and discussion 

3.1. Spectroscopy analysis of saponins with different detection methods 

R1, Rb1 and Rg1 are the main bioactive components of P. notoginseng. 
We observed their chromatogram and spectra using four detection 
techniques: HPLC, UV, Raman and THz spectroscopy. The resulting 
chromatogram and spectra are depicted in Fig. 1. The standards R1, Rb1 
and Rg1 were first detected by HPLC. The difference of their retention 
times is used to differentiate the three saponins, as shown in Fig. 1(a). R1 
is appeared at 25.7 min, Rg1 at 29.0 min, and Rb1 at 52.4 min. According 
to the positions of the measured peaks, the subsequent identification of 
P. notoginseng samples is determined, and the saponin contents are 
calculated using corresponding peak areas. The results of UV spectros
copy are displayed in Fig. 1(b), revealing that the peaks of these three 
saponins are not distinct and cannot be differentiated from each other 
due to interference from noise. Similarly, Raman spectroscopy results in 
Fig. 1(c) show that the absorption peaks of the three saponins are all 
concentrated at 1467 cm− 1 and 1530 cm− 1, which cannot be distin
guished. Through THz detection, due to the resonance absorption be
tween the THz wave and the vibration and rotation of the functional 
groups in different molecules, the absorption peaks of the three saponins 
are clearly different, as shown in Fig. 1(d). The absorption peaks of R1 
are mainly located in regions I (7.6–8.9 THz) and III (10.6–12.1 THz), 
and those of Rb1 and Rg1 are mainly distributed in regions I, II (9.0–10.6 
THz) and region III. Obviously, both UV and Raman detection are unable 
to effectively differentiate the three saponins of P. notoginseng. There
fore, HPLC and THz methods are mainly used for the later analysis of 
origin identification of subsequent P. notoginseng samples. 

3.2. THz and HPLC detection and analysis 

After confirming the ability of HPLC and THz techniques for quali
tative identification and quantitative analysis of saponins, we began to 
analyze the source of P. notoginseng. A total of 252 batches of samples 
were collected in five major producing areas of P. notoginseng: Honghe 
Autonomous Prefecture (73), Kunming City (46), Qujing City (28), 
Wenshan Autonomous Prefecture (92) and Chuxiong City (13) in 
Yunnan Province, China. The corresponding geographical distribution is 
displayed in Fig. 2(a) − 2(e). The farming conditions is detailed in 
Fig. S2. 

Firstly, we tested all samples with HPLC equipment (see Section 2.3 
for the processing steps). Prior to analysis, each sample underwent 
several pre-processing steps to extract the corresponding saponin elu
ates. Subsequently, saponin standard solutions were injected into the 
HPLC system to establish the standard retention times. This process was 
repeated three times for consistency. Next, each sample was injected and 
analyzed twice. The entire process took 28 h in total. Representative 
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chromatograms of each origin tested by HPLC are presented in Fig. 2(f) 
to 2(j). It can be seen that the elution time of saponins R1, Rb1 and Rg1 is 
25.8–26.5 min, 29.1–30.1 min, and 52.6–53.6 min, respectively. These 
intervals show certain distinctions in terms of retention times, peak 
areas, and tailing factors. 

Next, for the THz detection, we tested all samples with FTIR equip
ment (see Section 2.2 for the processing). Each sample was tested four 
times, each time for 3 min, a total of 12 min. The obtained spectra of 
P. notoginseng from each origin are shown in Fig. 2(k) - 2(o). It can be 
observed that there is an absorption peaks in each range including I (7.9 
THz-9.5 THz), II (9.5 THz-11.3 THz) and III (11.3 THz-12.6 THz). All 
spectra of 252 samples, and spectra-to-spectra variance for each origin 
are shown in Fig. S1. The absorption peaks were basically the same as 
those of the three saponins in Fig. 1(d), and the slight changes in the 
width and shape were due to the overlap of absorption peaks caused by 
other substances in P. notoginseng, such as polysaccharides and amino 
acids. In addition, due to the unknown information introduced by the 
environments of different origins, the absorption peaks of P. notoginseng 
exhibited certain disparities in terms of frequency, amplitude, relative 
proportion, and peak areas. 

The spectral differences among samples from the five origins ob
tained by HPLC and THz methods may be caused by a series of factors, 
the first of which is extrinsic factors, such as variations in instrument 
components, measurement surroundings and operation procedures, 
which have little influence under standardized operation. The second 
category is intrinsic factors, such as differences in the contents of various 
components of P. notoginseng, including R1, Rb1, Rg1, other saponins, 
glucose and amino acids, etc, which occupy the main influence. The 
third category encompasses some unknown elements introduced by the 
local environment, such as trace elements in the soil. 

3.3. Traditional deep learning method 

Based on the above spectral differences among P. notoginseng of 
different origins, we can combine the algorithm to extract the relevant 
information for origin identification. Considering that the overall in
formation of the samples involves nonlinear variations resulting from 
multiple factors, conventional analytical methods prove insufficient for 
analyzing such intricate samples. Hence, we use a CNNs model to utilize 

and enhance the information within the spectra, enabling effective 
origin discrimination. 

3.3.1. Modeling of CNNs 
Our CNNs model is set up with two convolutional layers, two pooling 

layers, one dropout layer, and one fully connected Layers. The con
volutional layers carry out element-wise multiplication and summation 
on the input data using convolutional kernels, with the intention of 
extracting local features from the input data and capturing spatial re
lations and specific patterns [46]. Since our input datasets are composed 
of one-dimensional spectra, both convolutional layers are designed ac
cording to a 1 dCNN architecture. The dimensions of the convolutional 
kernels, along with the specifications for padding and stride, are defined 
as 3, 1, and 1 respectively. To diminish data dimensionality and the 
quantity of parameters while retaining significant features, we choose 
max-pooling layers. The parameters of the two max-pooling layers are 
standardized, featuring a kernel size and stride of 1 and 2 respectively. 
Furthermore, we incorporate Dropout layers to counteract potential 
neural network overfitting, with a dropout rate set at 0.5. Ultimately, the 
neural network comprehends the relations and weights among features 
through fully connected layers. In this process, the employment of the 
softmax activation function facilitates the mapping of the ultimate 
feature to their corresponding output categories. 

Given the challenges posed by traditional optimization algorithms 
during model training, such as the difficulty in selecting appropriate 
learning rates, issues of gradient instability, and managing parameters of 
varying scales, we have opted for the Adam optimizer as the optimiza
tion method for our model. By employing strategies such as adaptive 
learning rates and dynamic momentum, the Adam optimizer effectively 
expedites model convergence and yields improved results, thereby 
alleviating the burden of hyperparameter tuning. Ultimately, the 
model’s batch size is set at 64, signifying that each iteration incorporates 
64 spectral samples as inputs for the model. Additionally, the model’s 
learning rate is fixed at 0.0001. 

3.3.2. Binary classification of the CNNs model for origin identification 
Once the CNNs model was established, the spectral data of 

P. notoginseng samples were initially categorized into two major groups: 
Yunnan Wenshan and Other Origins. Subsequently, a binary 

Fig. 1. The resulting chromatogram and spectra: Chromatograms of R1, Rb1 and Rg1 under HPLC detection (Orange diamond), (b) UV spectra, (c) Raman spectra and 
(d) THz of R1 (blue triangle)、Rb1 (Green circle) and Rg1 (Red square). The error bar has been labelled on each curve. 
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classification identification model was trained based on HPLC and THz 
spectra training dataset. 

The binary classification results of the CNNs Model for HPLC and 
THz spectral validation datasets are exhibited in Fig. 3. In the HPLC 
analysis, out of the 252 samples, 12 samples that actually originated 

from Yunnan Wenshan were misclassified as other regions, resulting in 
an accuracy of 95.24%, as shown in Fig. 3(a). In terms of THz spectra, 5 
of the 252 samples were incorrectly judged to be from other regions, 
with an accuracy of 98.02%, as shown in Fig. 3(b). It can be seen from 
the observation results that the accuracy of binary classification of the 

Fig. 2. Geographical distribution of P. notoginsengs from five origins of Yunnan Province, China: (a) Wenshan, (b) Kunming, (c)Chuxiong, (d) Qujing and (e) Honghe, 
(f)–(j) Representative chromatograms of five origin through HPLC detection, (k)–(o) Representative spectra of five origins through THz detection. The error bar has 
been labelled on each curve. 
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model is always above 95%, which meets the identification re
quirements of P. notoginseng from Wenshan. Subsequently, we proceed 
to further enhance our analysis by employing the CNNs model to 
perform a comprehensive five-classification origin identification. 

3.3.3. Five-classification of the CNNs model for origin identification 
According to the origins of the samples, we divided the spectral data 

into five categories: Wenshan Autonomous Prefecture, Honghe Auton
omous Prefecture, Kunming City, Qujing City and Chuxiong City. 
Correspondingly, we built a five-classification identification model 
using HPLC and THz spectral training data. 

The five-classification results of the CNNs Model for HPLC and THz 
spectral validation datasets are exhibited in Fig. 4. In HPLC analysis, 22 
out of 252 samples were misclassified with an accuracy of 91.27%, as 
shown in Fig. 4(a). In terms of the THz analysis, 10 out of 252 samples 
were misjudged with an accuracy of 96.03%, as shown in Fig. 4(b). It can 

be observed that, compared to the binary classification model, the ac
curacy of the five-classification model has slightly decreased. Notably, 
the accuracy of the five-classification based on THz spectra is still more 
than 95%, while the accuracy of the five-classification based on HPLC is 
significantly decreased. 

To analyze the reasons for the decrease of accuracy, we used a 
confusion matrix to visualize the categorization of the model. As shown 
in Fig. 4(c), in HPLC analysis, the classified recall rate of Chuxiong 
P. notoginseng by CNNs model was pretty low, only 57.1%. This signifies 
that the model has limited ability to accurately detect Chuxiong 
P. notoginseng, resulting in a propensity to misidentify P. notoginseng 
from Chuxiong as originating from other regions. Furthermore, the 
CNNs model exhibits precision as low as 68.2% when classifying 
P. notoginseng from Qujing. This indicates a weak reliability of the model 
in correctly identifying samples as sourced from Qujing, which conse
quently leads to an elevated tendency of mislabeling P. notoginseng from 

Fig. 3. Binary classification radar map of CNNs model (252 samples): (a) HPLC, (b) THz.  

Fig. 4. Five-classification radar map of CNNs model (252 samples): (a) HPLC, (b) THz. Five-classification confusion matrix of CNNs model (252 samples): (c) HPLC, 
(d) THz. 
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other origins as originating from Qujing. This is due to the limited 
quantity of P. notoginseng samples obtained from Chuxiong and Qujing, 
accounting for only 5.16% and 11.11% of the total dataset, respectively. 
This scarcity of samples increases the challenge of the model to learn the 
intricate nonlinear relations between the dataset and the origins of 
Chuxiong and Qujing. 

The five-classification confusion matrix based on THz spectroscopy is 
visualized in Fig. 4(d). For limited quantity of P. notoginseng samples, the 
model demonstrates a recall rate of 89.5% for identifying P. notoginseng 
originating from Chuxiong, while the precision and recall rates for the 
other origins both surpass the 90% threshold. Evidently, compared to 
HPLC, the combination of THz spectroscopy and the CNNs model has 

Fig. 5. Permutation Feature Importance (bar charts): (a) Chuxiong, (b) Honghe, (c) Kunming, (d) Qujing and (e) Wenshan.  
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better performance in the field of geographic five-classification of 
P. notoginseng. 

3.4. Nonlinear relations between spectra and origins 

By comparing the results of binary and five-class classifications, it is 
evident that under the same model, THz spectroscopy has excellent 
performance in origin identification. To explain this phenomenon, we 
integrate Permutation Variable Importance (PVI) to analyze the 
important features of THz spectra. This approach aims to analyze the 
underlying mechanism information behind origin identification. 

As shown in Fig. 5, important features with importance greater than 
0.7 are highlighted in red. For P. notoginseng from different origin, the 
ranges of important features depicted in Fig. 5(a)-5(e) are as follows: 
7.9–9.3 THz and 10.1–10.9 THz (Chuxiong), 7.6–9.5 THz and 9.9–10.8 
THz (Honghe), 8.5–9.3 THz and 10.5–11.1 THz (Kunming), 8.1–9.6 THz 
and 10.3–11.9 THz (Qujing), and 7.9–10.1 THz and 10.3–11.3 THz 
(Wenshan). These ranges correspond closely to the absorption peaks I 
(7.91 THz-9.55 THz) and II (9.55 THz-11.3 THz) of THz spectra, detailed 
in Fig. 2(f) - 2(o). We can see that these important features are man
ifested in different frequency points, including the amplitude of a single 
frequency point, the relative amplitude ratio between frequency points, 
the spectrum width and the corresponding area of continuous coverage 
by frequency points. A combination of these parameters can be used as 
the multi-dimensional information for the origin identification. 

Furthermore, in order to illustrate the relations among THz spectra, 
importance, and origins intuitively, we present the contour map for 
visualization as depicted in Fig. 6(a). The importance of five origins 
displays a clear contrast as it varies with frequency. In order to extract 
trends in feature importance as a function of frequency, we performed 
polynomial regression analysis, which revealed that the data from 
different origins conformed to different nonlinear function curves, as 
shown in the following formula: 

y = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8 + a9x9 (5) 

Table 1 below lists the polynomial coefficients and the goodness of fit 
(R2) for each origin. Significant differences in the coefficients were 
observed across the different origins. The corresponding distinct non- 
linear functional is depicted in Fig. 6(b), which can reflect the unique
ness of each origin. 

Based on these specific nonlinear relations, we can correspondingly 
enhance the feature extraction of these regions to further improve the 
accuracy of origin identification. Attributes such as frequency, ampli
tude, relative proportion, peak areas, and the full width at half 
maximum (FWHM) of peaks I and II are all correlated with the charac
teristics of their respective origins. Therefore, we combine these features 
with the spectral data as inputs to construct the FE-CNNs model. The 
results of FE-CNNs model are shown in Fig. 7(a). It can be seen that the 
accuracy of five-classification is up to 97.62%, only 6 out of the 252 

samples were incorrectly originated. The precision and recall rates for 
Chuxiong and Qujing reached 100% due to the extraction of important 
information from the THz absorption peaks, as depicted in Fig. 7(b). 
These results highlight that FE-CNNs model can provide effective origin 
identification even with a limited sample size and demonstrates an 
elevated capacity in terms of identification performance indicators 
compared with CNNs model. Therefore, the combination of FE-CNNs 
model with THz spectroscopy confers a robust advantage in accurately 
classifying the five origins of P. notoginseng, fulfilling the demand of 
precise identification of P. notoginseng origin. 

4. Conclusion 

In this paper, we proposed a method combining terahertz precision 
spectroscopy and CNNs algorithm to identify the origin of P. notoginseng. 
We focused on HPLC and THz detection to obtain chromatograms and 
spectra of 252 P. notoginseng samples from five origins and constructed a 
CNNs model to train the datasets, resulting in binary origins classifica
tion accuracy rates of 95.24% and 98.02%, respectively. Upon dis
tinguishing Wenshan from other origins in the initial step, a five- 
classification of origins was conducted for P. notoginseng samples from 
Wenshan, Chuxiong, Honghe, Kunming, and Qujing, Yunnan, achieving 
accuracy rates of 96.03% using THz spectra higher than HPLC (91.27%). 
Upon analyzing the reasons, we found that there are clear nonlinear 
relations between the origin and THz spectra, where the relatively broad 
absorption peaks encompass equivalent informative contents such as 
frequency, amplitude, relative proportion, peak areas and full width at 
half maximum. Extracting these contents into CNNs model, the accuracy 
of five-classification reached 97.62%. This study achieves rapid, 
nondestructive, and precise detection of the origin of P. notoginseng, 
offering potential applications to other herbal medicines and playing a 
crucial role in classification and identification within the herbal medi
cine domain. 
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