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A Hierarchical Feature Fusion and Attention Network
for Automatic Ship Detection From SAR Images

Qiangian Mao ", Yinwei Li

Abstract—Automatic ship target detection technique is a typical
and meaningful application for synthetic aperture radar (SAR)
image interpretation. Nevertheless, the detection of ship targets
within SAR imagery is encumbered by several detracting elements,
including obscured outlines, varying dimensions, and elaborate
backgrounds, which collectively render the identification process
challenging. Existing methodologies for discerning ship targets
prove inadequate in effectively navigating these complications.
Therefore, we propose a new deep neural network to automatically
detect ship target from SAR images, which is named as hierar-
chical feature fusion and attention network (HFFANet). HFFANet
is based on CSPDarknet, the backbone network of YOLOX, and
adaptive feature fusion and attention (AFFA) module is innovated
to enhance feature extraction. In AFFA, adaptive multilevel feature
fusion module is proposed to achieve effective multilevel feature
adaptive fusion to better extract target contours and suppress
background clutter to reduce false alarms, and enhanced residual
coordinate attention module is also proposed to enhance spatial
location information and embed it into channel features in the
channel layer. The experiments on SAR ship dataset have been
conducted, and the mean average precision of HFFANet is 98.53%.
Compared with the classical networks, the experimental results
show that our model not only achieves the optimal balance in
precision and recall, but also achieves the optimal calculation cost.

Index Terms—Attention mechanism, deep learning, multilevel
feature fusion, ship target detection, synthetic aperture radar
(SAR) image interpretation.

1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active Earth ob-
servation imaging system that is characterized by high
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resolution and can effectively identify camouflage and pene-
trate occlusions [1]. With its unique advantages, SAR images
have been widely used for disaster monitoring, environmental
monitoring, crop estimation and mapping [2]. Ship detection
from SAR images is a research hotspot because of its important
applications in both military and civil affairs [3]. However, due
to the characteristics of SAR imaging such as long wavelength,
discrete target and background noise interference, the features
of ships in SAR images are composed of many scattering points,
and small ships are easily ignored, which reduces detection
rate [4]. In addition, the complex background and surrounding
facilities around the ships near the pier are easily identified
as the same target, which further increases the difficulty of
ship detection in SAR images. Therefore, effective ship target
detection methods for SAR image interpretation are crucial [5].

The field of artificial intelligence has become popular in recent
years, and the rapid development of artificial intelligence is due
to the application of deep learning algorithms [6], which has
higher classification accuracy, avoids complex manual extrac-
tion of features, and greatly reduces workload, resulting in good
generalization performance and good adaptability to complex
environments. Nowadays, deep learning-based target detection
techniques are divided into two main categories, namely two-
stage and one-stage methods. Two-stage methods first obtain
the candidate anchor and then classify the candidate anchor
to find a more accurate location. The classical algorithms of
the two-stage are given in [7], [8], and [9], which usually have
higher accuracy but are slower. The one-stage methods do not
need to get the candidate anchor and directly generate the class
and location coordinate values of object, and the final result
can be obtained directly after a single detection. The classical
algorithms of one stage are given [10], [11], and [12], which
in the past was thought to be faster but less accurate. But with
the development of one stage series of algorithms, the accuracy
of one stage algorithm has long exceeded that of two-stage
algorithm under the condition of fast speed.

Although deep learning technology has also achieved great
success in SAR image target detection [13], the ship target
in SAR image has some interference factors such as blurred
contour, different size, and complex background, which brings
unique challenges to the application of deep learning technology
in ship target detection from SAR images [14]. Therefore, this
article proposes a new end-to-end deep neural network for
automatic ship target detection from SAR images. CSPDarknet,
the backbone network of YOLOX [12], the first network in the
YOLO family that applies the anchor free model, is adopted
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as the baseline network to reduce both the time consumption
and the arithmetic power. To solve the problems of complex
interference and lack of adaptive feature extraction and fusion
methods in SAR images, an adaptive feature fusion and at-
tention (AFFA) module is proposed, which combines bidirec-
tional feature pyramid network (BiFPN) [10], enhanced residual
coordinate attention (ERCA) module and adaptive multilevel
feature fusion (AMFF) module. This makes the network pay
more attention to the important space in the global semantics,
improve the detection accuracy and save arithmetic power.

The main contributions of this article are summarized as
follows.

1) A new effective end-to-end deep neural network for auto-
matic SAR images ship target detection, namely, hierar-
chical feature fusion and attention network (HFFANet), is
proposed based on adaptive feature fusion and attention.
HFFANet achieves fast, automatic, and high-precision
ship target detection results through more discriminative
features extraction and effective multilevel feature fusion.

2) The AFFA module is developed by combining domain
knowledge from SAR multiscale analysis with improved
attention mechanism in deep learning. In AFFA, BiFPN
fuses high- and low-level features to make the model better
fuse features and weight useful information; ERCA is ap-
plied to shallow features, which makes the model focus on
spatial features of small targets; AMFF performs adaptive
multilevel feature fusion to make the model pay more
attention to target features and suppress background in-
terference. Therefore, AFFA module can enhance feature
extraction and fusion to improve the detection accuracy of
multiscale ship targets in complex backgrounds.

The rest of this article is organized as follows. Section II
is the problem statement. Section III describes the proposed
network in detail. Section IV indicates the experiment results and
the performance assessment of the proposed network. Finally,
Section V concludes this article.

II. RELATED WORK

In the past decades, many scholars have conducted research on
ship target detection using SAR images. In traditional methods,
various image features are frequently used. Structural feature-
based detection algorithm has superior accuracy and robustness
[15], [16], [17]. But its complexity is high and the application
scenario is limited. Grayscale feature-based detection algorithm
is based on constant false alarm rate [18], [19], which has good
performance in weak target environments, but has more false
alarm detections. Texture features-based detection algorithm can
achieve good performance in single backgrounds [20], [21],
[22], [23]. But these methods are sensitive to speckle noise
and complex backgrounds and complex preprocessing is usu-
ally mandatory, inevitably resulting in low accuracy, high false
detection rate, poor robustness, and time-consuming.

Deep learning techniques have been employed for automatic
targets detection from SAR imagery [24]. Compared with tradi-
tional algorithms, it has the advantage of high accuracy, no man-
ual feature extraction, and better robustness and generalization
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Fig. 1.

SAR image slices with small target ships.

performance. In deep learning target detection task, the perfor-
mance of target detection is closely related to the structure of net-
work. Many network improvement methods have been proposed
for different application scenarios [25], [26], [27]. The biggest
difficulty of ship targets detection in SAR images is that most
ships are small in size, and the high background complexity leads
to the already small ships being more easily confused with back-
ground noise. In addition, there are also many large-scale ship
targets in SAR images, and the detection effect will be greatly
reduced if only small-scale targets are considered and large-scale
targets are ignored. Therefore, in the view of the unique charac-
teristics of SAR images, it becomes quite necessary to investi-
gate the following challenges to enhance the performance of ship
target detection in the research domain of SAR image analytics.

A. Challenges of Small Target Ships Detection in SAR Images

SAR image slices of small target ships are shown in Fig. 1. On
the left is the original image and on the right is the slice graph
labeled with ground truth. As you can see, some ship target sizes
in SAR images are very small relative to slices. In deep networks,
the characteristic information of small target ships is easily lost
after multiple pool processing. Therefore, this feature makes
small target ship become the difficulty of SAR ship detection.

B. Challenges of SAR Target Ships Detection With
Background Interference

Fig. 2 shows SAR ship image slices with complex background
interference. On the left is the original image, and on the right is
the image marked with the actual ship frame. As can be seen, the
contours of SAR ship targets will be aliased with the surrounding
background when coasts or islands appear in the SAR images.
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Fig. 2. SAR ship image slices with complex background interference.

Fig. 3.

SAR multiscale target ships with background interference.

This situation will make detection difficulty and easily lead to
misjudgment.

C. Challenge of SAR Multiscale Target Ship Detection Under
Background Interference

Another type of slice of SAR dataset is multiscale target
ships in complex scenes. This type of target is the most difficult
to detect and is highly sensitive to interference noise, islands,
coasts, etc. And the size of the ships is very different, which
has a great influence on the performance of the model. The
slice of multiscale SAR ship image under complex background
interference is shown in Fig. 3. On the left is the original drawing,
and on the right is an image marking the actual frame of the ship.

13983

It can be seen that in SAR images with complex background
interference, multiscale ship targets are easily confused by back-
ground and clutter interference, resulting in false positives and
missed detection.

In order to improve the multiscale target detection perfor-
mance of SAR ship images, it is necessary to retain the feature
information of small targets in different scale feature layers and
detect the features of large targets well. In [28], a feature pyramid
network structure is proposed to achieve multiscale feature
fusion, and it is applied to ship target detection [29]. In [30],
[31], and [32], the authors introduce the attention mechanism in
multi-scale feature fusion target detection algorithm. In [33] and
[34], the authors improve SAR multiscale target detection. Chen
et al. [35], apply adaptive feature fusion to bridge detection. All
these methods improve the multiscale target detection capability
of SAR from different angles.

Some researchers have also studied the performance of SAR
ship detection under complex background. In [36], a multires-
olution SAR target detection algorithm based on region convo-
lutional neural network (R-CNN) under complex backgrounds
is proposed. Li et al. [37], propose an anti-jamming model for
SAR target detection based on SSD to improve anti-jamming
capability. Fu and Wang [38], propose an SSD-based nearshore
SAR target detection algorithm, which is effective for a large
number of land scenes.

In addition, saving arithmetic power while ensuring network
accuracy is also an important consideration of target detection
algorithms. Changetal. [39], propose areal-time target detection
system based on YOLOV2, which reduces the computation time
while improving the accuracy. Zhang et al. [40], propose an
improved algorithm based on YOLOV3, which replaces the
backbone feature extraction network with Darknet-19, thus re-
ducing the computational effort. Liu et al. [41], propose the
receptive field block (RPF) structure, and introduce extended
convolution into the RPF structure to ensure the detection speed
of the model.

From the above analysis, it can be seen that the difficulties
of ship detection in SAR images are many small-size targets,
strong background interference and large ship size difference.
While some researchers have begun to investigate these issues,
as far as we know, they have only improved one of these factors.
At the same time, these improved networks do not involve
computational costs. To address these issues, we combine SAR
multiscale analysis with an improved attention mechanism in
deep learning, called adaptive feature fusion and attention. Un-
der the premise of ensuring the speed of model detection, the
framework realizes the high-precision automatic detection of
ships from SAR images.

III. METHODOLOGY

A. Hierarchical Feature Fusion and Attention Networks
(HFFANet)

To realize high-precision SAR ship target detection, an
efficient end-to-end target detection framework HFFANet
is proposed in this article, as shown in Fig. 4. HFFANet
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Fig. 4. Framework of HFFANet.

consists of backbone feature extraction network CSPDarknet,
enhanced feature extraction network AFFA, and classification
and regression module. In the network, CSPDarknet of YOLOX
backbone network is adopted as the baseline and AFFA module
combines BiFPN and ERCA with AMFF to enhance the spatial
information in the extracted high-resolution feature layer and
reduce the influence of background features.

The SAR image is input into the backbone network for initial
feature extraction, and three feature maps of different sizes
are output. Then, these feature maps are fed to AFFA module
for enhanced feature extraction and background interference
feature suppression. In AFFA, BiFPN is introduced to weight
important features layers [10]. ERCA is a coordinated attention
mechanism proposed in this article, which combines the coord
attention module and residual connectivity approach [42], [43].
It makes the network pay more attention to the spatial position of
target point while avoiding overfitting, and can locate the target
position in the image more accurately. By using it to suppress
the interference of background scattering information in shallow
feature layer, the network makes the network can pay more
attention to the details of small targets. Deep features refer to
features obtained by further downsampling shallow features. For
example, in the CSPDarknet architecture, “dark4” is considered
ashallow feature relative to “dark5,” but a deep feature relative to
“dark3.” In addition, it helps the network more accurately iden-
tify ship images with small targets and complex backgrounds.
AMFF feature pairs can be well combined with shallow and
deep features, enabling the network to adaptively choose to
focus on important spatial information. The classification and
regression module performs classification and regression on the
multilevel feature layers of the AMFF output, and finally output
the prediction results.

B. CSPDarknet

With the development of deep learning field, many lighter,
faster, and better networks have been created for us to choose
from and improve. YOLOX cleverly blends the best advances
in various fields of target detection with the YOLO family

of algorithms, providing significant performance gains while
maintaining the YOLO family’s typically efficient inference
speed. YOLOX uses YOLOv3 and Darknet53 as baseline for
mature improvements. The entire backbone of YOLOX is a
CSPDarknet composed of residuals, and uses a spatial pyramid
pooling (SPP) structure to improve the network’s perceptual
domain by maximizing feature extraction for different pool
kernel sizes.

Considering the excellent feature extraction capability of
CSPDarknet, we choose CSPDarknet as the baseline. The in-
put image is first subjected to CSPDarknet for initial feature
extraction, and the extracted features layer is the feature set of
the input image. In CSPDarknet, we obtain three feature layers,
namely “dark3,” “dark4,” and “dark5.” These three feature layers
are located in the middle layer, lower middle layer, and bottom
layer of the main CSPDarknet.

C. Adaptive Feature Fusion and Attention

To enhance and fuse the features extracted from the backbone
network effectively, AFFA module is proposed. It consists of
three components: BiFPN, ERCA, and AMFF. The input fea-
tures are fused by BiFPN and then the shallow feature layers are
processed by ERCA. Finally, AMFF is carried out for BIFPN’s
deep feature layers and ERCA’s output features.

1) Bidirectional Feature Pyramid Network: Each level fea-
ture contains distinctive image information. High-level features
have a larger perceptual range and stronger semantic feature
representation, but the relative resolution is low, and the detail
perception ability is poor; low-level features have a smaller per-
ceptual range and weaker semantic representation, but relatively
high resolution and strong detail perception ability. Therefore,
to improve the accuracy of the network, fusion of high- and
low-level features is a good approach. In previous multiscale
feature fusion structures, such as the PANet used by YOLOX,
the emphasis is often placed on the fusion of features at different
scales, ignoring the fact that different scale features actually
have different importance. Some features contribute more to the
network, while others contribute less. To address this problem,
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BiFPN introduces additional weights for features at different
scales, enabling the network to learn the importance of each
input feature through both top-down and bottom-up multiscale
feature fusion. Therefore, we use BiFPN to improve the net-
work’s ability to distinguish the importance of feature levels and
suppress unwanted information by placing different weights on
the feature levels.

BiFPN is a structure that facilitates fast fusion of multiscale
features. In AFFA, BiFPN is used only for initial feature fusion.
Thus, this article only uses BiFPN once to achieve the expected
effect, reducing the amount of computation and improving the
speed of feature fusion. Its structure is shown in Fig. 5, where
upsampling and downsampling respectively serve to increase
and decrease the resolution of feature maps. Upsampling uses
interpolation methods, while downsampling uses max pooling
methods [44].

The BiFPN structure has three inputs: P3, P4, and P5. These
three inputs are “dark3,” “dark4,” and “dark5,” respectively for
the features that should be extracted from the backbone. The
inputs for P6 and P7 are generated after two downsamples
of P5. As shown in Fig. 5, input features are superimposed
on the feature layer through bottom-up upsampling, and then
superimposed on the feature layer by top-down down-sampling.
Because different feature inputs have different resolutions after
upsampling or downsampling, they contribute differently to the
output. It is necessary to learn by weighting each input feature
layer to determine which input features are important and thus
which input feature layers are more focused. Therefore, bidirec-
tional cross-scale connection and fast normalization fusion are
used. After fast normalization fusion, each normalized weight
is between 0 and 1.

2) Enhanced Residual Coordinate Attention: In the output
feature layer of BiFPN, different feature layers have different
effects on ship target detection. Among them, the shallow feature
layer has smaller perception field and is more suitable for ac-
quiring small target features. Therefore, to improve the detection
accuracy of small target ships under complex background, we
introduce an attention mechanism in the shallow feature layers
P3_out and P4_out of BiFPN output.

Squeeze-and-excitation (SE) is a classical channel attention
mechanism that enhances important information in channels

A%

Fig. 6.
structure.

(a)

Structure of attentional mechanisms. (a) SE structure. (b) ERCA

by weighting different channels using global average pooling
and a fully connected layer [45], as shown in Fig. 6(a). SE
can improve network performance with less computing burden.
However, the global pool establishes interchannel connections
by compressing global information, causing the structure to
pay too much attention to inter-channel information and lose
location information. For the ship target detection task, the
importance of location information is self-evident. To solve this
problem, inspired by CA mechanism, this article proposes a new
ERCA mechanism, which can embed position information into
the channel to obtain the position information of SAR ship in
complex environment. Its structure is shown in Fig. 6(b).

To enhance the spatial location information, the input two-
dimensional global pool is first divided into two one-dimensional
(1-D) global averaging pools, that is, the height and width of the
image are separated and encoded. Two 1-D global averaging
pools can extract horizontal and vertical features, respectively.
The output feature of BiFPN is x with the dimension of W x H
x C. First, ERCA encodes channel by channel along horizontal
and vertical coordinate directions, generating 1-D feature maps
inboth directions. In this case, 1-D feature maps in two directions
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not only have global perceptual field, but also have global feature
and position information. The two 1-D global averaging pools
are defined as follows:

1
2 (h) = — z. (h,i) (D
1
2 (w)=—= Y 2 (jw) 2)
0<j<H

where z"(h) and z*(w) are output feature maps in vertical

direction and horizontal direction, respectively.

The obtained bidirectional feature maps not only retain the
remote dependence relationship between feature maps, but also
retain the accurate position information in the spatial position,
which helps the network to predict the target position better.
Considering that the background of SAR ship images is complex
and the feature maps in different directions are quite different,
the convolution of the two directional feature maps is not con-
ducive to the location features acquisition of the model. Unlike
the CA mechanism, ERCA has two branches in both directions,
processing features in each direction. This structure can better
acquire the perceptual field in both directions. For SAR ship
target detection, ERCA structure further enhances the features
of both directions, emphasizes the position information of ship
target, and inhibits the interference of strong scattering features
in the background. After convolution, batch normalization and
nonlinearization, two 1-D feature maps are obtained as follows:

a" = § (Bn(F (2! (h)))) 3)

(&

a = 0 (Bn(F (2 (w)))) S

where F'(+) is the convolutional layer, Bn(-) is the batch nor-
malization, and §(-) is the nonlinear activation layer.

After activating the results of (3) and (4) by convolution,
the enhanced feature map is obtained by multiplying the input
feature map . (i, 7). Finally, inspired by the design of residual
module, the residual connection is introduced into ERCA. That
is, the final feature map y.(i,7) is generated by adding the
enhanced feature map to the input feature map x.(¢, 7). The
formula is as follows:

Yo (1,5) = z¢ (i,5) + 2c (4,§) x o (F (a”)) x o (F (a)).
5

From the above analysis, it can be seen that ERCA is not only
simple in structure, but also pays more attention to the details of
small target, which can reduce false alarms and missing detection
of small ship.

3) Adaptive Multilevel Feature Fusion: BiFPN and ERCA
output features solve the problem that small target ships in SAR
images are easy to be wrongly detected, but there are still many
problems in ship detection under complex background, such as
ship size difference. To solve these problems, this article designs
the AMEFF structure, which consists of multilevel feature fusion
and adaptive spatial feature fusion (ASFF), as shown in Fig. 7
AMFF extracts five feature maps of different sizes from ERCA
and BiFPN and inputs them into the ASFF module for further
processing.
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a) Multilevel feature fusion: To suppress the complex
background interference, the multilevel features of the input are
fused. Since larger scale feature maps can provide more detail
for smaller targets, large-scale feature maps are produced by
upsampling input feature maps to further improve the detection
performance of small targets in complex backgrounds. In ad-
dition, in order not to increase computational burden, we use
CBS structure to halve the number of channels. Fig. 8 gives the
CBS structure, which consists of a convolutional layer, a batch
normalization layer and an activation layer.

In the CBS structure, S represents the activation function
“SiLU” [46], and the activation functions in the rest of the
network structure are the default activation functions of the
original network YOLOX. Compared with other classical ac-
tivation functions, SiLU activation function is better at handling
overfitting problems and is suitable for processing complex SAR
images. Assuming that the input image is x and the output is
SiLU, the calculation formula is as follows:

1
14+e®’

As shown in Fig. 7, the five input feature maps are named
P3, P4, PS5, P6, and P7. In order to obtain large-scale feature
maps, P4 is superimposed with shallow feature P3 after double
upsampling, PS5 and P6 are superimposed after double upsam-
pling, respectively, and P7 is double upsampled. The process
of feature superposition is also the process of feature fusion.
The superposed features and the up-sampled P7 are respectively
input to the CBS module for convolution, batch normalization
and activation. The features of CBS processing are the fusion of
shallow features and deep features. Among them, the size of the
convolution kernel in CBS is 1x 1, which is used to adjust the
number of channels to facilitate subsequent processing. Finally,
they are input into the ASFF module for adaptive feature fusion.

b) Adaptive spatial feature fusion: In general, feature fu-
sion can enhance feature extraction, but it can also bring prob-
lems. A target may appear at the same location in different
feature layers. In this case, feature fusion is to take a certain
feature layer as a positive sample and other feature layers as a
negative sample, which is easy to lead to inconsistent positive
feature effects. Here, positive samples and negative samples
represent correctly identified samples and incorrectly identified

SiLU = z -

(6)



MAQO et al.: HIERARCHICAL FEATURE FUSION AND ATTENTION NETWORK FOR AUTOMATIC SHIP DETECTION FROM SAR IMAGES

1
i
[Ta ] H
1
)
—-l concat |—-| conv |——-| softmax |—>{ B! } f\: (L]
1
i :
levell i
__________________________________________________ 1
level2
level3 T

Fig. 9.  Structure of ASFF module.

samples, respectively. Especially when the feature map contains
objects of different sizes, the inconsistency of positive effects
of different scale feature fusion will be further exacerbated
because large-size objects are usually associated with small-
scale feature maps and small-size objects are associated with
large-scale feature maps. To solve the above problem, ASFF is
introduced to perform adaptive fusion on the output of multilevel
feature fusion. The purpose of ASFF is to make the network
pay more attention to the features of different scales, filter the
background interference information, and select the useful ship
target information. Fig. 9 gives the structure of ASFF module.

D. Classification and Regression

The output feature layer of ASFF is sent into the classification
and regression module for target detection. The detection results
consist of classification (Cls), confidence (Obj), and regression
(Reg). The classification part is called the classification branch,
and the confidence and regression part are called the regression
branch. In the classification branch, if the confidence value is
higher than the threshold, the sample is considered positive and
the category is marked. In the regression branch, the distance
between each pixel in the ground truth and the four edges of the
ground truth is taken as the regression target value for training.
Because the size of ships varies greatly, in order to make the
network have better generalization performance when detecting
ships, it is necessary to use detection modules with different
input sizes. In this article, three detection modules with the same
structure but different input feature scales are used as regression
and classification modules, as shown in Fig. 10.

E. Training

HFFANet is an anchor-free model [47] with much less com-
putational burden of training compared to anchoring models.
The loss function is used to compare the predicted and expected
outputs of the model and to find the direction of optimization.
In addition, to optimize loss function descent, Mini-Batch-SGD
is introduced [48].

1) Loss Function: The loss function is used to estimate the
difference between the predicted and ground truth of a model
and is a non-negative real number. The smaller the loss function,
the closer the predicted value is to the ground truth, and the more
accurate the model.

The output anchor frames of classification and regression
module are used for preliminary screening. For each anchor
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frame, the IoU is calculated as follows:

ANB
AUB

where A is the anchor frame, and B is the ground truth.

By setting the IoU threshold, the anchor frame is initially
screened and the prediction box is obtained. The output predicted
box is then finely filtering using simple optimized transport al-
location [49]. For finely filtered prediction box, the loss function
is calculated as follows:

IoU =

)

loss = Ireg + lovj + lcis ®)

where [ge, is the regression loss, lop; is the confidence loss, and
lcs 1s the classification loss.

2) Gradient Descent: When training the neural network, seta
random value for the weight, and then slowly this random weight
value is slowly backpropagated later in the training process to
make it close to the ideal weights. The gradient descent method
is used to update weight in each iteration training. The weight
updating formula is as follows:

it ©)

Wa+1 = W,
q+ q awq

where w, is the weight value of the g iteration, wq41 is the
weight value of the g+1 iteration, and [r is the learning rate.

In addition, the mini-batch-SGD method is used to accelerate
the training speed and make the network converge faster [48].
Finally, the weights are obtained until the loss function con-
verges to a local minimum.

IV. RESULTS
A. Datasets

To verify the performance of the proposed algorithm, this
article conducts the experiments using multisource and multi-
scale SAR ship datasets [50]. The dataset contains nearly 40 000
slices of SAR ship image from the Gaofen-3 and ESA Sentinel-1
satellites. Table I shows the SAR parameter information of the
dataset. These SAR images are obtained by working with many
different modes of SAR sensors, and the obtained images are not
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TABLE I
SAR PARAMETER INFORMATION FOR THE DATASET

Sensor Imaging Resolution Swath Incident Polarization Number
Mode Rg.xAz.(m) (km) angle(®) of images
GF-3  UFS 3x3 30 20-50 Single 12
GF-3 FS1 5%x5 50 19-50 Dual 10
GF-3  QPSI 8 x8 30 2041 Full 5
GF-3  FSII 10 x 10 100 19-50 Dual 15
GF-3  QPSII  25x25 40  20-38 Full 5
Sentinel-l SM  1.7x43to 80  20-45 Dual 49
3.6x4.9
Sentinel-1 IW 20x22 250 29-46 Dual 10

Fig. 11.

Sample dataset.

consistent in size and background of the ships. The scenarios in
the dataset include ports, offshore, and islands, and target types
include common ship targets such as cruise ships, bulk carriers,
large container ships and fishing vessels, as shown in Fig. 11.
Because the dataset contains almost all imaging scenarios and
ships of different types and sizes, it can satisfy the network’s
verification of generalization performance.

B. Parameter Settings

The experimental environment used in this experiment was
built under Windows. All comparison experimental networks
were implemented based on the pytorch framework and trained
using the NVIDIA GeForce RTX 3090 GPU synchrotron. In
order to ensure that the generalization performance of the algo-
rithm is not affected by the data set sequence, 10% of the images
are randomly selected as the test set, and the remaining images
are divided into the training set and the verification set according
to the ratio of 9:1. The initial learning rate (Ir) for all networks
is set to 0.01 and then automatically decays with training. Set
the batch size to 8.

C. Evaluation Metrics

Mean average precision (mAP) is a measure of network
model’s performance in predicting target locations and cate-
gories, which is used here to measure the accuracy of the model.
To get the mAP, you need to get the precision and recall

TP
- TP +FP

Precision

(10)
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]l =———
Reca TP TN

1D

where TP is the number of ships correctly detected by the
network., FP is the number of false alarm ships, and FN is the
number of missing ships.

Here, set a hyperparameter score threshold that directly affects
the values of precision and recall. By setting different scoring
thresholds, different precision and recall values can be obtained.
Generally, as precision increases, recall decreases, and it is
crucial to balance precision and recall rates. Therefore, F1 is
introduced to measure the model’s ability to balance precision
and recall. F1 is the harmonic average of precision and recall,
calculated by the following formula:

2 2 Precision x Recall

F1 = 12)

1

i P
Precion T Recali Precision + Recall

The larger the F1, the better the model’s balance of precision
and recall.

After precision and recall of all scoring thresholds are ob-
tained, precision—-recall curves are drawn. The area under the
curve is the average precision (AP). The larger the AP, the better
the network performance. Since there is only one type of target
in the dataset, in this case AP is the mAP we need. For the
sake of computational convenience and to save computational
resources, we employ the discrete summation method to calcu-
late the mAP. The interval of recall is set to a fixed value of 0.1,
and under this condition, the formula for calculating AP is as
follows:

AP => (Ry— Rn1) Py (13)

n

where R,, and P,are the recall and the maximum precision at
the nth recall point, respectively, and (R,, — R,,_1) represents
the interval of recall.

In order to more fully demonstrate our network accu-
racy while maintaining computational speed, this article intro-
duces floating-point operations (FLOPs), number of parame-
ters (Params) and inference speed (Inference time). FLOPs are
the number of floating-point operations performed per second.
Params is the total number of parameters that need to be trained
in model training to measure the model size. Inference time
refers to the time required for a neural network to make a forward
propagation. Therefore, comparing these three aspects of the
network allows a more complete evaluation of the network’s
performance.

Since the convolution kernel we are using has the same length
and width, we will call them both k. H,, and W, are the length
and width of the output feature layer, respectively, and H gy *
Wou is the size of the output feature layer. Cj, and C,,; are
the number of channels in the input and output feature layers,
respectively, then k2 % C,,, * Coy is the number of convolution
parameters. Therefore, the formula for calculating FLOPs is as
follows:

FLOPs = 2k? % Hyy * Wy % Cin % Cout. (14)
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TABLE II
COMPUTATIONAL COST OF EACH NETWORK
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TABLE III
DETECTION ACCURACY OF EACH MODEL

Network FLOPs(M) Params(M) iﬁlir(ill;; Network gf)cmon 52():2‘11 Fl ?;‘SP
Faster-RCNN 1478444 .97 136.69 136.77 Faster-RCNN  52.31 96.05 0.68 92.37
SSD 486046.93 23.61 44.49 SSD 94.55 90.38 0.92 96.46
YOLOX 199259.32 54.15 38.97 YOLOX 95.94 88.77 0.92 97.16
HFFANet 161408.09 40.24 38.13 HFFANet 94.88 95.36 0.95 98.53

The bold values highlight the best performing data in that column.

Params is obtained as follows:
Params = k2 % Cy * Coy. (15)

Inference time is calculated by dividing the forward time of
the model by the batch size, i.e.

forward time

Inf ti = 16
nference time toh so (16)
The forward time is calculated as follows:
Hi, \? batch size
f; d time= Cip % Couxk ¥ ——
Avare e <stride> * Hin ot TR GpU frequency
(17)

where Hj, is the height of input image, stride is the step size of
model, and GPU frequency is the frequency of GPU.

D. Analysis of the Experiment Results

To demonstrate the effectiveness of our proposed network,
we experimentally compare HFFANet with some classical one-
or two-stage object detection algorithms, such as Faster-RCNN
[8], SSD [11], and YOLOX [12]. To ensure the rigor of the
experimental comparison, all networks are implemented using
the same environment configuration in the PyCharm software,
using the official default parameters and code. In addition, the
training set, validation set, test set, training method, and train
epochs used in the experiment are all the same. Due to the
potential impact of differences in feature detail captured by
varying input sizes on the accuracy of the final experiment, we
have accordingly adjusted all comparative networks to match
the input image size of 256256 used in our HFFANet model
to ensure a fair comparison. Table II shows the computational
cost of each network.

It can be seen from Table II that Faster-RCNN, as a two-
stage algorithm, has the worst performance in terms of FLOPs,
Params, and Inference time. Although SSD have the fewest
Params, it has about three times the FLOPs of HFFANet, and
the inference time is also slower than the other two one-stage
models. While the YOLOX’s FLOPs is only about a third of
SSD’s FLOPs, it is still not as good as the HFFANet. Our
HFFANet is optimal in FLOPs and inference time, and the
Params is also within the acceptable range. Therefore, our model
is optimal in terms of computational cost.

In order to better display the balance and expressiveness of
precision and recall, score threshold = 0.5 is usually set to obtain
Precision, Recall, and F1, as shown in Table III.

As can be seen from Table III, although the recall of Faster-
RCNN reaches 96.05%, its precision is only 52.31%, which

The bold values highlight the best performing data in that column.

makes its F1 only 0.68, and thus its mAP is also the lowest.
While the SSD reached 94.55% precision, it does not take recall
into account. YOLOX’s precision is the highest of the four
networks, but recall is only 88.77%. HFFANet strikes the best
balance between precision and recall. Therefore, the F1 value
of HFFANet is the largest. In addition, the mAP of our network
is the highest, which proves that the overall performance of our
model is also the best. From the above two tables, it can be seen
that our model not only performs best in terms of calculational
cost, but also in the model mAP.

To more intuitively show how our network improves under
different challenges of ship detection, as described in Section II,
we list three sets of images for comparison: small ships under
normal background, ships of similar size under complex back-
ground, and multiscale ships under complex backgrounds. Three
images are selected from each group for comparison. In the
following three sets of comparison images, the green rectangular
box represents the ground truth, the yellow rectangular box
represents the detected object, and the red and orange ellipse
represent false and missed alarm, respectively.

1) Analysis of Small Ships Detection Results Under Normal
Background: Fig. 12(a) is the labeled SAR images of small
ships detection under normal background, including 4, 12, and
6 ships, respectively. Fig. 12(b) shows the ship detection results
of Faster-RCNN. As can be seen from Fig. 12(b) that there are
12 false detections, including 8 false alarms and 4 missed ships.
It indicates that Faster-RCNN can easily confuse the small ship
target with the background in small ships detection. Fig. 12(c)
depicts the detection results of ship by SSD.

We can see 15 wrong detections, in which the number of false
alarms decreases by 5 to 3 compared with Faster-RCNN, but the
number of missed ships increases by 8 to 12. The results indicate
that SSD is easy to miss small targets in the detection process,
resulting in poor detection effect. Fig. 12(d) demonstrates the
detection results of ships by YOLOX. There are four false alarms
and two missed ships, which is better than Faster-RCNN and
SSD. Fig. 12(e) illustrates the detection results of ships by
our proposed network. All ship targets are detected with only
three false alarms. Small ships are easily confused with the
background, resulting in considerable false alarms and missed
ships. It can be seen from the overall detection results that
HFFANet is more capable of handling small ship detection than
Faster R-CNN, SSD, and YOLOX.

2) Analysis of Similar Size Ship Detection Results Under
Complex Background: Fig. 13(a) is the labeled SAR image
of ships of similar size under complex background, including



13990

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

1
- ground truth

(@) (b)

Fig. 12.

: detected ship O: false alarm

: missed alarm

(d) (e)

Labeled SAR images and detected results of small ships under normal background by different networks. (a) Labeled SAR images. (b) Detected results

of ships by Faster-RCNN. (c) Detected results of ships by SSD. (d) Detected results of ships by YOLOX. (e) Detected results of ships by HFFANet.

five, one, and four ships, respectively. Fig. 13(b) depicts the
ship detection results of Faster-RCNN. There are eight false
detections, including six false alarms and two missed ships.
Specifically, from the middle image of Fig. 13(b), even if the true
ship target is detected, its prediction frame is significantly larger
than the ground truth. Fig. 13(c) demonstrates the detection
results of ships by SSD. We found that there are one false alarm
and one missed ship, which is far superior to Faster-RCNN.
In addition, the size of the correctly detected target prediction
box in the middle image is also closer to the ground truth.
Fig. 13(d) illustrates the detection results of ships by YOLOX.
We can see four false alarms and one missed ship, which is better
than Faster-RCNN, but worse than SSD. Comparing Fig. 13(b)
and (d), we notice that there is one common false alarm and
one common missed ship, which is caused by the confusion
between the ship and the dock. Fig. 13(e) shows the detection
results of ships by HFFANet, from which it can be seen that all
ships are detected, with only one false alarm. At the same time,
the size of the correctly detected target prediction box in the
middle image is also closer to the ground truth. In the ship target
detection under complex background, it is easy to mistake the
background for ship target, so as to miss the true ship target on
the coast. Especially, it can be seen from the overall detection
results that slice edges of SAR image are more easily detected by
errors. However, HFFANet can distinguish between ships and
backgrounds better than the Faster-RCNN, SSD and YOLOX.

3) Analysis of Multiscale Ship Detection Results Under Com-
plex Background: Fig. 14(a) demonstrates the labeled SAR im-
ages of multiscale ships under complex backgrounds, including
five, seven, and five ships, respectively. Fig. 14(b) shows the
ship detection results of Faster-RCNN. We can see twelve false
detections, including five false alarms and seven missed ships.
Fig. 14(c) depicts the detection results of ship by SSD. Only
eleven ships were absent, accounting for 64.70% of all ships.
Fig. 14(d) is the ship detection results of YOLOX. We can
see three false alarms and three missed ships, which is better
than Faster-RCNN and SSD. Fig. 14(e) illustrates the detection
results of ships by HFFANet, from which it can be seen that
there are two false alarms and two missed ships. According to
the overall detection results, Faster-RCNN and SSD are almost
ineffective in multi-scale target detection under complex back-
ground. Although YOLOX is much better than Faster-RCNN
and SSD, it is still worse than our proposed network.

4) Results Comparison Under Different Training Iteration
Number: To ensure the rigor of the experimental comparison,
the training of all networks in the experiment has no pretraining
weight. Because of the difference of networks, different net-
works will converge under different training iteration number.
Generally speaking, when the network reaches a certain of
training iteration number, the loss function converges to the
minimum value, and the network accuracy does notincrease with
the increase of the training iteration number. The loss function
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(d) (e)

Labeled SAR images and detected results of similar size ships under complex background by different networks. (a) Labeled SAR images. (b) Detected

results of ships by Faster-RCNN. (c) Detected results of ships by SSD. (d) Detected results of ships by YOLOX. (e) Detected results of ships by HFFANet.

of HFFANet converges to its minimum value after 120 training
iterations. Therefore, to compare the effect of the number of
training iterations on network’s mAP, all the networks are trained
for 60, 80, 100, and 120 times, respectively.

According to Fig. 15 we can see that Faster-RCNN does not
converge at the 60th iteration, with mAP of 82.40%, and the other
three networks are basically stable, proving that the convergence
rate of Faster-RCNN is the slowest. Faster-RCNN gradually
stabilizes after 80 iterations with mAP of 91.22% and reaches
92.37% accuracy after 120 iterations, but it is still far lower
than the other three networks. The mAP of SSD is consistent,
reaching its peak at the 100th iteration with 96.52% and slightly
decreasing to 96.46% at 120 iterations. YOLOX shows a gradual
increase, with the highest mAP of 97.19% at the 100th iteration
and a slight decrease to 97.16% at the 120th iteration. HFFANet
outperforms all with the highest mAP at each iteration milestone,
showing 97.05% at 60 epochs and steadily rising to an impressive
98.53% by the 120th epoch.

Therefore, the end result shows that HFFANet not only con-
verges faster but also achieves a higher mAP in fewer iter-
ations. When the training iteration reaches full convergence,
our proposed network still performs the best, with the mAP
reaching 98.53%, which is 2.01% and 1.34% higher than SSD
and YOLOX at the 100th iteration, respectively.

5) Results Comparison Under Different Training Set Per-
centages: The division of the training set and the validation set
also affects the network accuracy. To further demonstrate the

robustness of HFFANet under different training set percentages,
the dataset is repartitioned and the training set percentages
are adjusted to 30%, 50%, 70%, and 90%. At this time, the
repartitioned datasets are fed into the networks for testing. The
experimental results are shown in Fig. 16. As can be seen from
Fig. 16, the mAP of Faster-RCNN increases rapidly with the
increase of training sets percentage, which also indicates the
low generalization ability of Faster-RCNN. The SSD’s mAP
is basically stable except for 70% of the training set ratio, but
its maximum is only 96.69%. YOLOX’s mAP on all training
set percentage is basically the same, indicating that YOLOX
has good generalization performance, but its maximum value is
only 97.53%. HFFANet is based on YOLOX and also inherits
its good generalization, with a maximum value of 98.53%, the
highest of all networks.

V. DISCUSSION

Compared with Faster-RCNN, SSD, and YOLOX, HFFANet
is guaranteed in terms of the number of parameters, the amount
of computation, and the speed of inference. HFFANet achieved
the best balance between precision and recall, with mAP
achieving the highest 98.53%. From the detection results of the
three groups of images, it can be seen that Faster-RCNN, SSD,
and YOLOX have more false positives and missed positives than
HFFANet. In addition, the comparison of results under different
training iterations and percentage of training sets shows that
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: missed alarm

(d) (e

Labeled SAR images and detected results of multiscale ship under complex backgrounds by different networks. (a) Labeled SAR images. (b) Detected

results of ships by Faster-RCNN. (c) Detected results of ships by SSD. (d) Detected results of ships by YOLOX. (e) Detected results of ships by HFFANet.
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Fig. 15.  Network mAP under different number of iterations.

the generalization effect of HFFANet is better than that of the
other three networks. Therefore, the experiment proves that our
proposed network is successful.

However, in the comparison experiments, we find a phe-
nomenon that is contrary to the common perception. That is,
Faster-RCNN, which has the highest computational cost, has
the lowest accuracy. The reasons for this phenomenon can be
explained from the following two aspects.

First, from the perspective of network structure, Faster-RCNN
is a classic two-stage network, while other networks in the
comparison experiment are all one-stage networks. For

98

93

mAP(%)

83

—&—Ours SSD

—*%—YOLOX —H&—Faster-RCNN

78

30 50 70 90
Training datasets(%)

Fig. 16. Network mAP under different training set percentages.

one-stage network, there is no procedure for generating regional
proposals. The class probability and position coordinates of
the target are directly generated by the feature mapping, and
the final detection result can be directly obtained by a single
detection. So, one-stage network takes less computation. The
two-stage network performs target detection in two stages. In
the first stage, regional proposals are obtained. In the second
stage, the localization is refined and classified. So, two-stage
network is more computationally intensive

Second, the Faster-RCNN series uses only the last layer
of the convolutional network. However, the feature mapping
of the last layer of convolutional networks is often too small.
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This makes subsequent detection and regression unsatisfactory.
Even some small objects have no feature points on the final
convolution layer. Therefore, Faster-RCNN performs poorly in
small target detection.

VI. CONCLUSION

The biggest difficulty in automatic detection of ship targets
from SAR images is that ship scales vary greatly, and most
ships are small in size, which makes ship targets more suscep-
tible to background and clutter interference in highly complex
environments. To solve these difficulties, HFFANet end-to-end
neural network is proposed. HFFANet has good multiscale target
automatic detection performance, which is mainly due to two
new structures proposed in this article. The combination of
ERCA and AMFF structures can effectively extract multiscale
features of fusion and suppress background interference.

HFFANet can extract effective features of multiscale ships
from SAR images and distinguish between ships and back-
ground disturbances, thereby improving feature maps. In ad-
dition, because HFFANet is robust against targets with complex
background, it can also be used to detect other SAR targets,
such as aircraft, buildings, and vehicles. The proposed HFFANet
closely combines neural network with SAR image analysis and
accelerates the research in the field of SAR intelligent target
detection.
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