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ABSTRACT 
The a-dicarbonyl compounds are glycolysis metabolites with high 
reactivity that can cause damage to nucleic acids, proteins, and other 
macromolecules, leading to various chronic diseases. The rapid and 
accurate detection of a-dicarbonyl compounds in organisms is of 
great significance for understanding their roles in the initiation and 
progression of chronic diseases. Spectroscopic techniques, known for 
their effectiveness, sensitivity, and ease of use, are widely employed 
for this purpose. This review provides a concise overview of the ana-
lytical strategies and performance of spectroscopic techniques used 
in detecting a-dicarbonyl compounds, including nuclear magnetic 
resonance (NMR) spectroscopy, infrared (IR) spectroscopy, fluores-
cence spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. 
Additionally, this review highlights the advancements and trends in 
the detection of a-dicarbonyl compounds.
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Introduction

The a-dicarbonyl compounds (a-DCs) represent a distinct category of highly reactive 
electrophilic substances characterized by the presence of two carbonyl groups (C¼O). 
This category comprises glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-DG), 
and 2,3-butanedione (2,3-BD). These compounds originate from two main sources: one 
is from food processing, particularly originating from high-sugar foods, such as cookies, 
cakes, yogurt, and honey.[1] The other source is the in vivo metabolic processes of car-
bohydrates, which include sugar degradation, lipid metabolism, and amino acid oxygen-
olysis.[2,3] Despite their origin in sugar, these compounds exhibit significantly higher 
activity, surpassing glucose by 102 to 105 times.[4]

Under normal circumstances, a-DCs are carefully regulated by the glyoxalase enzyme 
system to maintain a healthy range in organisms. However, metabolic disorders can 
result in the abnormal accumulation of a-DCs.[5] When concentrations of these com-
pounds exceed the healthy range, they can lead to a multitude of unwanted bioeffects. 
Table 1 summarizes the unwanted biochemical changes caused by a-DCs, highlighting 
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their crucial roles in human physiological processes. Their strong chemical reactivity 
carries substantial implications for cellular components, including nucleic acids, pro-
teins, and lipids, leading to the formation of advanced glycation end products (AGEs) 
and oxidative stress-induced cellular damage.[17,18] Subsequently, these biochemical 
changes disrupt metabolic pathways, trigger the aberrant activation of inflammatory 
pathways,[19] and accelerate the abnormal proliferation and differentiation of cell,[20,21] 

leading to various chronic diseases such as cancer, neurological disorders, diabetes, and 
heart disease.[22–24]

These a-dicarbonyl compounds are well-documented carcinogens and potent toxins 
in humans. Recent research has highlighted the clinical relevance of a-DCs, particularly 
focusing on MGO. In 2012, Cai et al.[25] was observed that sustained exposure of mice 
to elevated concentrations of MGO led to the manifestation of hallmark symptoms of 
diabetes, including abdominal obesity and insulin resistance. Subsequently, in 2018, 
Hanssen et al.[26] identified a significant correlation between MGO levels and mortality 
rates in diabetic patients. More recently, further research uncovered the direct correl-
ation between the levels of MGO in the blood of diabetic patients and the extent of 
vascular and neurological impairments, as well as the severe stenosis or complete occlu-
sion of coronary arteries in both the heart and brain.[27,28] Beyond its implications in 
diabetes, elevated MGO levels were also noted in individuals afflicted with age-related 
conditions such as atherosclerosis,[29] renal failure,[30] Parkinson’s disease,[31] and 
Alzheimer’s disease.[32]

Table 1. Molecular structures and the main bioeffects of four representative a-dicarbonyl 
compounds.
Name Molecular structure Bioeffect

Glyoxal (GO) 1. Superoxide anions: inhibits the secretion of 
cytosolic oxidase, leading to cellular damage.[6] 

2. Genotoxic properties: reacts with DNA and 
causes chromosomal mutations, promoting 
tumor activities.[7] 

Methylglyoxal (MGO) 1. Oxidative stress: has dual-role in cancer 
progression.[8,9] Lower doses of MGO are able 
to establish an adaptive response in cancer 
cells, while higher doses cause cellular 
apoptosis.[10,11] 

2. Major precursor of AGEs: is implicated with 
diabetes, aging, neurodegenerative and 
cardiovascular diseases [5,12] 

2, 3-Butanedione (2, 3-BD)  1. Oxidative stress: impairs lung epithelial barrier 
function, potentially leading to bronchiolitis 
obliterans and even lung cancer.[13] 

2. Major precursor of AGEs: reacts with 
hemoglobin and albumin, disrupting their 
normal functions and immune responses.[14] 

3-Deoxyglucosone (3-DG) 1. Oxidative stress: includes inflammation, 
oxidative stress, and the formation of AGEs 
disrupting mediating downstream effects.[15] 

2. Major precursor of AGEs: glycolyzes IgG, thus 
interfering with its normal function and 
immunity, leading to diabetic 
microangiopathy.[16] 
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Given the diverse biogenic functions of a-dicarbonyl compounds that impact various 
physiological and pathological processes, monitoring these compounds in organisms 
holds significant importance. This not only facilitates the identification and mitigation 
of potential health risks, but also enables the early diagnosis of conditions associated 
with the perturbations of these compounds.

General methods for detecting a-dicarbonyl compounds

Because of the increasing attention to a-dicarbonyl compounds in clinical medicine, 
various detection techniques have recently been developed. According to the Web of 
Science database (Figure 1a), 527 relevant articles published in the last decade (2012- 
2023). Among these, optical spectroscopic techniques, mass spectrometry,[33–35] electro-
chemical methods,[36,37] and enzyme-linked immunoassay (ELISA)[38,39] are commonly 
used. As shown in Figure 1b, optical spectroscopic techniques were the most popular 
(60.0% of related papers), followed by mass spectroscopy (27.3% of related 
papers). ELISA and electrochemical methods were less commonly used (<5% of related 
papers).

Figure 1. The number of published papers devoted to the determination of a-dicarbonyl compounds 
in 2012–2023, according to Web of Science database.
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Each of these technologies has advantages and disadvantages (Table 2). 
Electrochemical methods determine an analyte based on its electrical properties, such as 
potential, charge, and current. This method is low-cost and user-friendly, but it lacks 
specificity and sensitivity. To improve detection specificity, researchers have developed 
ELISA techniques, including competitive ELISA and sandwich ELISA, that rely on anti-
gen-antibody interaction and enzymes. However, these methods require expensive 
labeled antibodies and lengthy pretreatment procedures, which limit their widespread 
use. Mass spectrometry is a powerful technique for detecting various organic com-
pounds but it needs cost and complex instruments. In contrast to the aforementioned 
methods, optical spectroscopic techniques are based on the interaction between analyte 
and light (absorption, emission, and scattering).[40] Different spectroscopic techniques 
operate at different electromagnetic frequencies, but all offer high sensitivity, accuracy, 
rapid response time, low cost, as well as ease operation.[41,42] Therefore, despite many 
detection methods being used in a-DCs analysis, optical spectroscopy techniques remain 
the most popular. In light of these, this review focuses on the analytical strategies and 

Table 2. Overview of the advantages and disadvantages of spectrum detection and other fre-
quently-used technologies in a-dicarbonyl compounds detection.
Types Technologies Advantages Shortages

Spectrum  
detection

FL probe � Visualization 
� Specificity 
� High sensitivity 
� High resolution imaging 

� Requires specific labeling for target 
molecules 

� Limited penetration depth 
� Interference from background 

fluorescence 
HPLC-FLD � High sensitivity 

� Specificity 
� Requires specific labeling for target 

molecules 
� Interference from background 

fluorescence 
LC-UV � Short wavelength for high 

resolution 
� Cross-reaction with other compounds 
� time-consuming derivatization 
� variability induced by different sample 

treatments 
NIR probe � High sensitivity 

� High selectivity 
� Real-time imaging for deep 

tissues 

� Requires specific labeling for target 
molecules 

MIR & FIR & THz � Simple operation 
� Suitable for chemical 

composition analysis 
� Nondestructive analysis 

� Difficulty in complex overlapping peak 
analysis 

� Many interfering factors 
� Limited penetration in water-rich 

samples 
NMR � Detailed information on 

molecular structures 
� Noninvasive analysis 

� Expensive and complex instrument 
� Requires strong magnetic fields 
� Require professional data analysis 

Others Electrochemistry � Low-cost 
� User-friendly operation 
� Rapid 

� Interference from background sample 
composition 

� Limited sensitivity 
ELISA � High specificity for target 

molecules 
� Specific labeled antibodies are required 
� Time-consuming 
� Interference from sample matrix 

Mass spectrometry � High sensitivity 
� Identifies and quantifies 

complex mixtures 

� Expensive equipment and maintenance 
costs 

� Destructive and Cumbersome sample 
preparation process 

� Requires long-running 
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performance of different spectroscopic detections used in determining a-DCs, along 
with their advances and trends.

Optical spectroscopic techniques for detecting a-dicarbonyl compounds

Optical spectroscopy techniques serve as guiding tools for revealing the diverse nature 
of a-DCs across different electromagnetic waves, as shown in Figure 2. From 2012 to 
2023, many research groups have used optical spectroscopy techniques to analyze 
a-DCs. According to the Web of Science database (Figure 1c), 248 relevant articles were 
published. Fluorescence (FL)-based methods were the most popular (52.8% of related 

Figure 2. Framework of the review on recent advancements in optical spectroscopy techniques for 
a-dicarbonyl compounds analysis, including fluorescence (FL), ultraviolet (UV), infrared (IR), and 
nuclear magnetic resonance (NMR) spectroscopy. Adapted with permission from Ref.[43] # 2014 
American Chemical Society. Adapted with permission from Ref.[44] # 2018 Elsevier B.V. Adapted with 
permission from Ref.[45] # 2015 Elsevier B.V. Adapted with permission from Ref.[46] # 2019 
American Chemical Society. Adapted with permission from Ref.[47] # 2004 Elsevier Inc. Adapted with 
permission from Refs.[48,49] All article content, except where otherwise noted, is licensed under a 
Creative Commons Attribution (CC BY) license.
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papers), followed by ultraviolet (UV) spectroscopy (25.9% of related papers), infrared 
(IR) spectroscopy (13.0% of related papers), and nuclear magnetic resonance (NMR) 
spectroscopy (8.2% of related papers). These spectroscopic techniques have been used in 
various applications such as food, biological samples, aerosols, and pharmaceuticals. 
Each of these techniques will be discussed in detail.

Ultraviolet spectroscopy detection

Our investigation begins with UV spectroscopy, which exposes the electronic transitions 
occurring within a-DCs in the wavelength range of 10 to 400 nm. The detection prin-
ciple is as follows: each a-dicarbonyl compound possesses two carbonyl groups (C¼O), 
containing conjugated p electrons that absorb UV radiation. By analyzing the wave-
length and intensity of UV peaks, we can directly identify and characterize these organic 
molecules. The application of ultraviolet spectroscopy in detecting a-carbonyl com-
pounds can be categorized into two classes: direct UV detection and liquid chromato-
gram (LC)-UV detection, where UV spectroscopy is combined with LC.

Direct UV detection
The UV spectra of a-carbonyl compounds are influenced by their molecular structures 
and surrounding microenvironments (solvent polarity, pH, temperature, and complex-
ing agents). Since the 1990s, UV spectroscopy has been used to analyze the molecular 
structure of a-carbonyl compounds. For instance, Meller et al.[50] used conventional UV 
spectroscopy to analyze gas-phase MGO and found it exhibits high cross-sectional val-
ues within the range of 370 to 450 nm. In 1998, Koch et al.[51] employed home-made 
UV spectroscopy to monitor MGO and further investigate its photolysis in air. They 
identified two n-p� transition peaks at 290 nm and 445 nm respectively. These works 
contributed to our understanding of MGO behavior in the UV region and provided 
valuable insights into its monomer structure. In 2005, Volkamer et al.[52] conducted a 
high-resolution UV measurement for GO and reported UV absorption values that were 
10–30% higher at 250 nm and 526 nm compared to previous low-resolution works. This 
research enhanced calculations related to GO dissociation frequency and improved 
wavelength calibration accuracy. These studies have provided a valuable database for 
analyzing the molecular structures of a-carbonyl compounds through UV spectroscopy.

Also, UV spectroscopy plays an important role in the microenvironmental analysis of 
a-carbonyl compounds. Nemet et al.[47] investigated the effect of solvent and tempera-
ture on MGO through direct UV detection. Within different solvents, the UV absorp-
tion peak of MGO remained at 290 nm while the intensity varied. After dehydration of 
MGO, an absorption peak at 430 nm appeared, and disappeared after re-addition of 
water. These findings indicate that MGO exhibits two different forms: the 290 nm peak 
is associated with the monomer form, while the 430 nm peak is linked to the polymer 
form. Furthermore, it is evident that the solution has a significant influence on the 
equilibrium between different MGO structures. In addition, heating MGO at 60 �C for 
30 mins increased the intensity at 290 nm, suggesting a temperature-induced alteration 
in carbonyl forms.
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LC-UV detection
However, the high reactivity of a-DCs easily leads to interference in their direct UV 
detection, posing challenges for precise analysis in organisms. To address this problem, 
the combination of UV spectroscopy and LC technique provides a reliable approach by 
facilitating their separation from interfering substances using LC and enabling precise 
quantification through UV detection based on their UV chromophores.

The development of HPLC-UV techniques for the analysis of a-DCs in various 
organisms has undergone significant progress over time. Table 3 summarizes the repre-
sentative works. In the work conducted by Nemet et al.[53] in 2004, reverse-phase HPLC 
with UV detection was used to detect MGO in human plasma. This approach involved 
protein precipitation and derivatization treatment using 1,2-diamino-4,5-dimethoxyben-
zene, offering advantages of cost-effectiveness and rapidity. The linear concentration 
range covered 200 to 1000 nmol/L, with a limit of detection (LOD) of 30.6 pmol at 
215 nm and a relative standard deviation (RSD) of 3.5%. In 2018, Wang et al.[54] suc-
cessfully employed HPLC-UV detection to quantify four a-dicarbonyl compounds (GO, 
MGO, 3-DG, and 2, 3-BD) in commonly consumed foods. The derivatization was con-
ducted with 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine, at pH 9.0 and ambient 
temperature for 30 mins. This method demonstrated low LODs (0.05 lmol/L for GO, 
0.05 lmol/L for MGO, 0.05 lg/L for 3-DG, and 0.02 lmol/L for 2,3 BD), and an RSD 
below 2.7%. In 2020, Taïbi et al.[57] used reverse-phase HPLC-UV detection to analyze 
the MGO level in cattle serum, employing o-phenylenediamine as the derivatization 
agent. This method exhibited a linear range of 4.2–422 lg/mL, with the LOD of 
51.41 lg/mL and the limit of quantification (LOQ) of 155.80 lg/mL. The precision as 
indicated by the RSD, remained below 7.15%. These works demonstrated that the LC- 
UV detection methods offer a dependable and effective approach for quantifying a-DCs 
in biosamples, providing valuable insights into food chemistry and glucose metabolism.

In short, UV spectroscopy is a simple way to detect a-DCs, but its effectiveness is 
limited for complex organisms. Combining it with LC improves sensitivity and selectiv-
ity, but requires extra steps like derivatization. Nonetheless, challenges remain in 
HPLC-UV due to reliance on OPD derivatization, which can be interfered with by other 
compounds. Additionally, derivatization and separation processes are time-consuming, 
limiting the use for monitoring changes in complex samples. More importantly, differ-
ent sample treatments such as complex lysis procedures in cell studies, lead to variabil-
ity in results. Therefore, developing new derivatization agents to enhance selectivity and 
reduce time, along with establishing standardized sample treatment protocols, are cru-
cial for advancing LC-UV technology in a-DCs analysis.

Fluorescence spectroscopy detection

Fluorescence spectroscopy is a prominently employed technique for analyzing the struc-
ture, conformation, and microenvironment of biomolecules through the measurement 
of their fluorescent emission, typically within the visible range (200-700 nm). The identi-
fication of molecular species is facilitated by the dependence of the position and shape 
of fluorescent peaks on the electronic structure within molecules. Changes in concentra-
tion or environment can be inferred by examining the fluorescence intensity, which 
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depends on the excited state lifetime and molar absorption rate. This method finds 
broad application in environmental, pharmaceutical, and biological analyses. However, 
direct detection of a-DCs poses a challenge owing to their absence of inherent fluores-
cence properties. Therefore, diverse labeling techniques are employed in the fluores-
cence spectroscopy detection of a-DCs,[63,64] which can be classified into two main 
types: derivatization reaction-based or probe-based methods.

Derivatization reaction-based fluorescence detection
Table 4 presents the commonly used derivatizing agents for detecting a-dicarbonyl 
compounds through fluorescence analysis. In a study by Lodge-Ivey et al.,[65] high-per-
formance liquid chromatography-fluorescence technique (HPLC-FLD) was employed to 
analyze MGO in rumen fluid, using the derivatizing agent 6-hydroxy-2,4,5-triaminopyri-
midine (TRI). This method demonstrated a LOD of 0.125 lg/mL, accompanied by an 
intraday RSD of 4.7%. The approach determined the MGO levels in urine from various 
subjects, showcasing its sensitivity and effectiveness. In 2014, Ojeda et al.[66] determined 
different a-dicarbonyl compounds (GO, MGO, and 2, 3-BD) in urine using HPLC-FLD 
with the derivatizing agent of 4-methoxy-o-phenylenediamine (4-MPD). This method 
achieved baseline resolution within 12 mins, demonstrating its time-saving characteris-
tic. The LODs for GO, MGO, and 2,3-BD were found to be 0.46 lg/L, 0.39 lg/L, and 
0.28 lg/L, respectively, with an intraday RSD of 6%, demonstrating its high-sensitive 
and precise characteristics. This approach is supposed to be applied in clinical-related 
studies. In 2015, Rodr�ıguez-C�aceres et al.[67] applied HPLC-FLD to quantify GO and 
MGO in wine, using 3,4-diaminopyridine as a derivatization reagent. This method 
offered advantages of rapid separation (about 4 min) and high sensitivity (LOD: 1.29 lg/ 
L for GO and 0.44 lg/L for MGO). In 2016, a study led by Ogasawara et al.,[68] the con-
centration of MGO in human plasma was measured following a 40-min reaction with 
1,2-diamino-4,5-methylenedioxybenzene (DMB) through HPLC-FLD. The results indi-
cated that MGO levels in human plasma ranged from 24 to 258 nmol/L, with an RSD 
value of 2.55%. In 2019, Dhananjayan et al.[69] employed ultra-high-performance liquid 
chromatography (UHPLC) coupled with fluorescence detection for the determination of 
GO and MGO in serum samples. The derivatization reagent was 6-diamino-2,4-dihy-
droxypyrimidine sulfate (DDP). The achieved LODs were 0.17 pmol for GO and 0.10 
for MGO respectively, with an intraday RSD below 7.3%.

The derivatizing agents can be divided into three types. The first type includes fluor-
escent derivatives with a specific structure that reacts with MGO to form a stable ring 
structure and emit fluorescence for selective detection. Examples include DMN, TRI, 4- 
MPD, 3,4-DAP, DMB, and DDP. Their differences are mainly in reaction conditions, 
such as temperature, derivatization time, and pH, making them suitable for different 
biological matrix detection applications. 4-MPD has the longest derivatization time (4 h) 
and a low reaction temperature (40 �C), making it stable and suitable for repetitive 
detection in neutral matrices. DMN, TRI, and DMB have shorter derivatization times 
(<1 h) and faster elution separation speeds (10 min), but require a slightly higher reac-
tion temperature (60-80 �C) and acidic pH. Therefore, these derivatizing agents are suit-
able for rapid detection in acidic biological matrices, while lower temperature and 
alkaline pH are suitable for fast detection in alkaline biological matrices. DDP can react 
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with dicarbonyl compounds in both acidic and alkaline conditions, making it adaptable 
to various biological matrices by adjusting the pH.

In addition to fluorescent derivatives, there are hydrazine-based and furan-based 
derivatives. Hydrazine-based derivatives like NPHNA react easily with MGO without 
heating but have lower bio-safety. Furan-based derivatives like 2,20-furil are safer and 
more efficient but need a higher reaction temperature.

Fluorescent probe technology
Unlike derivatization-based fluorescence detection, fluorescence probe technology 
involves the attachment of fluorescent probes to target molecules, facilitating selective 
recognition. When target molecules are excitated by an external light source, the 
attached fluorescence probe emits a signal at a distinct wavelength. Through analyzing 
the intensity, wavelength, and lifetime of this fluorescence signal, both qualitative and 
quantitative identification of the target molecule can be achieved. This technology 
presents the benefits of real-time observability, robust specificity, noninvasiveness, and 
superior spatial and temporal resolution. Therefore, it is widely used for analyzing the 
concentration and environmental factors related to target molecules. In 2013, Wang 
et al.[72] reported a one-photon fluorescent probe named MBo (methyl diaminoben-
zene-BODIPY) to visualize MGO levels within live cells. This fluorescent probe distin-
guished itself by overcoming the electron-deficient nature of quinoxalines through 
strategically optimizing both the fluorophore and aromatic group electronics in reaction 
to MGO. Notably, this probe exhibited high sensitivity and exceptional selectivity in 
in vitro experiments, demonstrating effectiveness even at low concentrations (50 nM). 
Meanwhile, this approach simplified sample processing (without the need for protein 
precipitation steps) and significantly reduced incubation time (3 h as opposed to 24 h). 
This innovative tool was considered to be of great value for unraveling the intricate 
roles of MGO in various diseases and cellular processes.

However, single emission wavelength fluorescent probes face challenges in biological 
tissue analysis due to their susceptibility to absorption and autofluorescence interference 
in tissues, potentially compromising detection accuracy. Recently, ratiometric fluorescent 
probes have garnered significant research interest. In 2015, Tang et al.[73] introduced 
PDN-1, a two-photon "turn-on" fluorescence probe designed for the rapid detection of 
MGO. This probe is characterized by its dual interaction with both MGO and the OPD 
group, resulting in a remarkable 33-fold increase in fluorescence by inhibiting photo-
conductive electron transfer. The enhanced fluorescence enabled a LOD of 77 nM 
within the range of 0–10 lM. In 2021, Wang et al.[74] reported a ratiometric fluorescent 
probe named NAP-DCP-4 for MGO detection in cells. This probe introduced OPD and 
guanidine (GND) as bipolar reaction sites, forming an “AND” logic gate system. 
Differing from the probe designed by Tang et al.,[73] NAP-DCP-4 exhibited remarkable 
reversibility with MGO, attributed to its ingenious design that harnessed the intramo-
lecular charge transfer mechanism and the excitation wavelength modulation to select-
ively induce fluorescence emission from deprotonated adducts. This distinctive attribute 
significantly improved selectivity for MGO compared to other dicarbonyl compounds, 
resulting in a noteworthy LOD of 1.8 lM. With this tool, the changes in MGO levels 
within the RAW264.7 cells after lipopolysaccharide stimulation were successfully 
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monitored. In 2022, Wang et al.[48] accomplished a breakthrough in the simultaneous 
determination of different a-DCs. They introduced an open fluorescent probe (ANC- 
DCP-1) for monitoring MGO and GO in urine, achieving impressive LODs of 7.3 lM 
for MGO and 4.7 lM for GO, respectively. More recently, Xie et al.[75] specifically 
designed a fluorescence probe (2,3-diaminonaphthalene, DAN), for monitoring MGO 
levels in blood samples from diabetes subjects. With increasing MGO concentration, the 
fluorescence intensity of DAN gradually diminishes, while the intensity of the DAN- 
MGO adduct proportionally increases, as visually represented by a progressive shift in 
fluorescence color from blue to green. One significant feature of this probe is its excep-
tional detection efficiency. Within just 60 min, the fluorescence intensity of DAN rap-
idly decreases by approximately 100%, while there is a simultaneous and substantial 
increase in product fluorescence intensity. Another significant feature of this probe is its 
high sensitivity, with a LOD of 0.33 lm. The fluorescence intensity is noteworthy for its 
strong correlation with MGO concentration in the range of 0–75 lM, supported by an 
impressive correlation coefficient of 0.991. In addition to its sensitivity, the method 
demonstrates remarkable specificity for MGO and exceptional resilience against interfer-
ence. A comparative analysis with the traditional OPD probes revealed the inherent 
self-correction capabilities of the ratiometric strategy. DAN strategically evades interfer-
ence from serum and intracellular medium through the emission peak at 530 nm for 
DAN-MGO adduct formation.

Researchers encounter three main challenges when detecting a-DCs with fluorescent 
probes. At first, the majority of documented fluorescent probes are designed for the 
selective detection of methylglyoxal (MGO), utilizing ortho-phenylenediamine (OPD) as 
the reactive moiety. While OPD demonstrates enhanced reactivity with MGO under 
physiological conditions in comparison to other alpha-dicarbonyls, thereby effectively 
mitigating cross-reactivity, it is prone to nonspecific reactions with other reactive species 
such as formaldehyde (FA) and nitric oxide (NO). Additionally, a significant portion of 
fluorescent probes necessitate prolonged reaction times, rendering them unsuitable for 
applications in tissue imaging or real-time monitoring. Lastly, the irreversible reactivity 
exhibited by most probes poses a challenge in dynamically tracking the levels of a-DCs.

To address these issues, researchers developed efficient, selective, and reversible fluor-
escent probes by combining the OPD group with other fluorescent groups. Table 5
compares these probes in DCs detection, including optimum detection conditions, 
Sensitivity, and selectivity. Recently, Xu et al.[80] have developed fluorescent probes 
NAP-DCP-1 and NAP-DCP-3, which have shown a notable enhancement in reaction 
rate with methylglyoxal (MGO). The binding process with MGO can be accomplished 
within a short duration of 20 min, thereby reducing the time required for sample prep-
aration. Furthermore, these probes demonstrate improved selectivity toward MGO, 
effectively mitigating the impact of potential interfering compounds. These probes have 
been effectively utilized for the real-time monitoring of MGO levels in tissues and blood 
samples.

To summarize, fluorescence spectroscopy offers an effective approach for detecting 
low-concentration a-DCs in organisms. Its advantages include visualization, specificity, 
high resolution, high sensitivity, noninvasiveness, and nondestructiveness. However, this 
method faces a challenge in detecting deep tissues with both high sensitivity and 
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resolution due to its susceptibility to environmental factors.[81] To address this chal-
lenge, current research focuses on developing ratiometric fluorescence probes with emis-
sion in the near infrared region to enhance penetration depth and reduce 
autofluorescence in biological samples.[82,83] Current academic research primarily 
focuses on MGO, with limited exploration of GO and other dicarbonyl compounds. 
Future efforts could involve designing specialized fluorescence probes for selective rec-
ognition of these compounds, advancing dynamic monitoring technologies. Combining 

Table 5. Comparison of typical fluorescence (FL) probes for a-dicarbonyl compounds.
FL probe FL detection Biological matrix Sensitivity (LOD†) Selectivity† References

MBo kex/em ¼ 480/ 
532 nm 

(turn-on)

Hela cells 50 − 100 nM (MGO) MGO over 
GO/NO

Wang et al.[72]

PDN-1 kex/em ¼ 405/ 
528 nm 

kex/em ¼ 880/480– 
550 nm

Hela cells 77 nM (MGO) MGO over GO/ 
NO/MI

Tang et al.[73]

NAP-DCP-4 kex/em ¼ 365/ 
559 nm 

(irreversible turn-on 
response, Off– 
On–On) 

kex/em ¼ 425/ 
559 nm 

(reversible turn-on 
response, Off– 
On–Off)

RAW264.7 cells 1.8 lM (MGO) MGO over GO/ 
NO/MI; 

FL turn-on ratios: 
24.7-fold 
(MGO), 9.8- 
fold (GO)

Wang et al.[74]

ANC-DCP-1 kex/em ¼ 525/558– 
615 nm 

(turn-on)

Diabetic urine 12.6 lM (MGO) 
12.1 lM (GO)

MGO and GO 
over NO/FA; 

FL turn-on ratios: 
6.4-fold 
(MGO), 8.9- 
fold (GO)

Chen et al.[48]

DAN kex/em ¼ 336/ 
387 nm 

kex/em ¼ 365/ 
544 nm 

(ratiometric)

HSF cells 0.33 lM (MGO) MGO over GO/ 
NO/FA

Xie et al.[75]

DAF-2 kex/em ¼ 435/ 
510 nm 

(turn-on)

Human plasma 0.7 lM (MGO) Cross-reactivity 
with NO

Shaheen et al.[76]

NI-OPD kex/em ¼ 380/ 
460 nm 

kex/em ¼ 780/420– 
480 nm

HeLa cells 0.56 nM (MGO) MGO over GO/ 
NO/FA

Yang et al.[77]

CMFP kex/em ¼ 350/440- 
525 nm 

(ratiometric)

HeLa cells 
Diabetic serum

0.5 lM (MGO) MGO over GO/ 
NO/FA

Wang et al.[78]

NP kex/em ¼ 440/ 
555 nm 

kex/em ¼ 760/500– 
550 nm

HeLa cells 1.47 lM (MGO) MGO over NO/ 
FA/MI

Gao et al.[79]

NAP-DCP-1 kex/em ¼ 425/ 
564 nm 

(turn-on)

Diabetic serum 0.72 lM (MGO) 
0.58 lM (GO)

MGO and GO 
over NO/FA/MI

Xu et al.[80]

NAP-DCP-3 kex/em ¼ 425/530– 
590 nm 

(turn-on)

HeLa cells 0.13 lM (MGO) 
0.16 lM (GO)

MGO and GO 
over NO/FA/MI

†LOD: limit of detection; NO: nitric oxide, an important gas signaling molecule and oxidative stress regulator; FA: formal-
dehyde, a key intermediate in one-carbon metabolism; MI: metal ions.
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findings from different a-DCs research could enhance understanding of sugar metabol-
ism products in the human body.

Infrared spectroscopy detection

The absorption of specific wavelengths of infrared radiation by a molecule results in the 
transition between vibrational and rotational energy levels. Infrared spectroscopy lever-
ages this phenomenon to furnish insights into the structure and composition of mole-
cules. This technique can be categorized into four types: near-infrared spectroscopy 
(NIR, wavelength region: 0.75–2.5 lm), mid-infrared spectroscopy (MIR, wavelength 
region: 2.5–25 lm), far-infrared spectroscopy (FIR, wavelength region: 25–1000 lm), 
and terahertz spectroscopy (THz, wavelength region: 30–3000 lm).

NIR spectroscopy detection
NIR spectroscopy exhibits sensitivity to combination bands arising from fundamental 
vibrations, particularly those involving H-containing functional groups (C-H, O-H, and 
N-H). Its nondestructive nature, transparency to water, and swift data acquisition ren-
der NIR spectroscopy a versatile analytical tool. However, the direct interpretation of 
NIR spectra presents challenges due to overlapping bands. To overcome this obstacle, 
chemometrics have been employed to extract meaningful information from these over-
lapping NIR bands.[84] This combined approach has gained widespread acceptance 
across diverse applications, ranging from compound composition analysis to quantita-
tive monitoring.[85,86] As a typical work within this research domain, Bonapace et al.[49] 

used NIR spectroscopy, principal component analysis and machine learning algorithm 
to evaluate the concentrations of MGO adducts in cancer cells. The study encompassed 
a cohort comprising 20 healthy volunteers and 40 cancer patients, with cell samples 
derived from various biological fluids, including plasma, serum, interstitial fluid, and 
whole blood. Results demonstrated a high sensitivity to MGO adducts (LOD of 0.03% 
v/v) and remarkable repeatability in distinguishing between tumor and non-tumor 
patients (R value of 0.72%) with no instances of false negatives or positives. Notably, 
this approach stands out for its simplicity and efficiency, relying solely on the direct 
measurement of solutes remaining on the sample surface after evaporation, thereby 
obviating the need for sample pretreatment.

In the field of high-contrast imaging, NIR probes have emerged as a novel tool for 
analyzing a-DCs in deep tissues (Table 6). These probes can generate signals within the 
NIR window, thereby mitigating the challenges posed by tissue absorption and scatter-
ing under ultraviolet excitation.[92] NIR probes are classified into two types based on 
their emission wavelengths: NIR-I probes (700–900 nm) and NIR-II probes (1000– 
1700 nm). In 2019, the first NIR-I fluorescent probe (MEBTD) for MGO was proposed 
by Ding et al.[46] The probe incorporated a specially designed thiadiazole-fused OPD 
moiety, resulting in emission within the range of 600–700 nm. The probe demonstrated 
several advantages, including a LOD of 18 nM and an off-on ratio of 131-fold. As a 
result, it was able to effectively visualize and analyze MGO in cancer cells. In 2020, 
Dang et al.[87] designed another NIR-I fluorescent probe (DBTPP), which emitted a sig-
nal at 650 nm. This probe exhibited an LOD of 262 nM for MGO, minimal 
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autofluorescence, and excellent photostability, enabling in vivo visualization of MGO in 
an Alzheimer’s disease mouse. Recently, Liu et al.[88] reported a novel NIR-I nanoprobe 
D/I-PNTs. This probe was prepared by encapsulating the hydrophobic DBTPP probe[87] 

and a hydrophilic IR783 probe into peptide nanotubes. The peptide nanotubes aided in 
enhancing water solubility, extending the emission range, and obviating the need for 
complex molecular design and synthesis. Compared to conventional imaging, the result-
ant nanoprobe exhibited remarkable sensitivity to MGO in deep tissues, with a LOD of 
272 nM and a penetration depth of 4 mm. NIR-II probes, which emit in the second 
near-infrared region, offer an additional approach to enhancing penetration depth. In 
2022, Dang et al.[89] introduced a novel NIR-II nanoprobe MG-SLNP, by incorporating 
a specially designed fluorescence probe TDTCD, with an amphiphilic copolymer, leci-
thin, and solid phase-change materials. This nanoprobe exhibited excellent stability and 
a high fluorescence quantum yield at emission wavelengths of 808 nm, enabling efficient 
imaging of MGO in both whole blood and tumor tissues simultaneously. In comparison 
to traditional imaging methods, this approach demonstrated a high-resolution viewing 
window, quick response (within 20 min), good penetration depth (5 mm), satisfactory 
sensitivity (57 nm) and selectivity.

These investigations provide evidence for the viability of NIR techniques in the detec-
tion of a-dicarbonyl compounds within organics, demonstrating their great potential in 
disease pathology studies and early diagnosis. Current research primarily uses NIR 
probes to detect MGO, focusing on improving selective identification using OPD as the 
core reactive group. Introducing heterocyclic structures helps shift emission wavelength 
to NIR region and increase intensity, enhancing resolution and detection depth. 

Table 6. Comparison of NIR fluorescence probes for a-dicarbonyl compounds.

NIR probe
Detection 
condition

Max 
penetration 

depth Biological matrix Sensitivity(LOD†) Selectivity† References

MEBTD kex/em ¼ 496/ 
650 nm 

(NIR-I)

N. A. 4T1 tumor 18 nM (MGO) MGO over GO/ 
FA/NO 

FL turn-on ratios: 
131-fold  
(MGO)

Ding et al.[46]

DBTPP kex/em ¼ 500/ 
650 nm 

(NIR-I)

N. A. SH-SY5Y cells 262 nM (MGO) MGO over GO/ 
FA/MI; Cross- 
reactivity with 
NO in acidic 
surroundings 
only

Dang et al.[87]

D/I-PNTs kex/em ¼ 488/ 
820 nm 

(NIR-I)

4 mm 4T1 tumor 272 nM (MGO) MGO over GO/ 
FA/NO

Liu et al.[88]

MG-SLNP kex/em ¼ 808/ 
1046 nm 

(NIR-II)

5 mm Diabetic blood; 
Mice kidney

57 nM (MGO) MGO over GO/ 
FA/NO/MI

Dang et al.[89]

MAM kex/em ¼ 808/ 
1050 nm 

(NIR-II)

N. A. Mice brain 72 nM (MGO) MGO over GO/ 
FA/NO/MI

Lai et al.[90]

MRM kex/em ¼ 808/ 
1048 nm 

(NIR-II)

N. A. 4T1 tumor 62 nM (MGO) MGO over GO/ 
FA/NO

Lai et al.[91]

†LOD: limit of detection; NO: nitric oxide, an important gas signaling molecule and oxidative stress; MI: metal ions; N. A. 
not mentioned in the literature.
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Nanocapsulation technology is also used to encapsulate NIR probes with hydrophilic 
materials, improving solubility and bioactivity. To sum up, these near-infrared probes 
demonstrate exceptional specificity for MGO, highlighting distinct benefits in tissue 
imaging and continuous blood monitoring. Subsequent research avenues could explore 
the application of near-infrared probes for additional dicarbonyl compounds, with a 
focus on adjusting the emission wavelength toward the near-infrared second window to 
improve detection capabilities at greater depths.

MIR spectroscopy
In contrast to NIR spectroscopy, MIR spectroscopy primarily corresponds to the funda-
mental vibrations of chemical bonds, specifically the stretching and bending vibrations. 
In a-dicarbonyl compound analysis, MIR characteristic peaks provided useful informa-
tion for studying their conformation and molecular behavior. In a study conducted by 
Profeta et al.,[93] high-resolution MIR spectroscopy was employed to investigate the 
vibration modes of GO, MGO, and 2,3-BD for the first time. The results revealed that 
GO in equilibrium demonstrated a trans configuration with 12 normal modes. MGO 
exhibited Cs symmetry and displayed 21 fundamental modes. 2,3-BD featured C2h sym-
metry and displayed 30 fundamental modes. Nevertheless, there were inconsistencies 
between experimental data and theoretical predictions in the 2,3-BD analysis. To 
address this issue, G�omez-Zavaglia and Fausto[94] employed low-temperature solid-state 
MIR spectroscopy and density functional theory (DFT) calculations to investigate the 
configuration of 2,3-BD in various phases. They discovered a new conformation for 2,3- 
BD and clarified the inconsistencies observed in previous research. Through refining the 
theoretical conformation model for 2,3-BD, they achieved a more accurate prediction of 
dipole moments in 2,3-BD at different temperatures. In 2016, Leicht et al.[45] used MIR 
spectroscopy and DFT calculations to analyze the configuration of the GO cation, and 
revealed that the GO cation was only stable in the trans configuration. These works 
emphasized the importance of MIR spectroscopy in understanding the intricate molecu-
lar behavior and properties of a-DCs.

Fingerprint spectroscopy detection (FIR spectroscopy and THz spectroscopy)
FIR spectroscopy and THz spectroscopy are sensitive to low-frequency vibrations, 
including pure rotational transitions, variable-angle vibrations, skeleton vibrations, and 
lattice vibrations.[95–98] In a-DCs analysis, the characteristic peaks in the far-infrared 
and terahertz regions provided useful information for studying their aggregation struc-
ture and intermolecular interaction. The FIR spectrum of trans-MGO has been exam-
ined in detail by Gurnick et al.[99] and ensuing works on the vibrational and rotational 
transitions at lower frequencies of MGO by Huber et al.,[100] Profeta et al.,[93] and 
Bteich et al.[101] detail the finer rotational and torsional modes overlaying these transi-
tions, especially the effects of rotor-vibrational coupling with the methyl rotor. 
However, the quantitative detection of a-DCs within the FIR and THz spectrums 
presents a significant challenge due to their intrinsic characteristics. Specifically, their 
absorption peaks are neither sharp nor intense, particularly at lower concentrations. 
Such limitations impede the direct and accurate detection of a-DCs through 
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conventional FIR and THz spectroscopy methods. To address this issue, Wu 
et al.[102,103] introduced an innovative approach. Through the utilization of OPD, MGO 
underwent a chemical conversion, resulting in a new product with distinct and robust 
absorption peaks in the far-infrared and terahertz range. This conversion enhanced the 
sensitivity of MGO detection, enabling quantitative analysis. The method established a 
linear relationship between MGO concentration and the peak intensity of the reaction 
product, covering a wide detectable range from 5 to 2500 nmol/mL with exceptional 
accuracy, as evidenced by a high correlation coefficient of 0.999. This work provides a 
rapid, straightforward, and cost-effective solution for the early detection and monitoring 
of diseases linked to MGO levels.

In conclusion, IR spectroscopy is an effective and straightforward method for investi-
gating the molecular structure of a-DCs. Compared to alternative spectral detection 
techniques, this analytical method requires a relatively less sample consumption and a 
shorter analysis time. However, the detection of a-DCs in organisms poses a challenge 
due to the overlapping absorption peaks arising from complex compositions. The key to 
addressing this challenge lies in establishing a robust and accurate analysis model. 
Ongoing research focuses on advancing the integration of chemometrics and IR spec-
troscopy analysis to enhance efficacy and precision in identifying information in bio-
logical samples.[104] Furthermore, researchers are devoted to incorporating these IR 
analysis models into portable electronic devices for point-of-care testing and remote 
patient monitoring, thereby expanding the applicability of IR techniques in diverse clin-
ical settings.

Nuclear magnetic resonance (NMR) detection

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in an 
external magnetic field absorb and re-emit electromagnetic radiation due to Zeeman 
splitting resonance. The NMR frequency is in the range of 60–1000 MHz, determined 
by the magnetic property and the chemical environment of the nuclei. As a result, by 
tracking the changes in frequency, researchers can identify the chemical structure, 
molecular dynamics, and intermolecular interaction of analytes.[105] The application of 
NMR spectroscopy in the identification of a-DCs can be categorized into three distinct 
areas: structural identification, quantitative analysis, and kinetic analysis of chemical 
reactions.

In the field of structural identification, NMR spectroscopy offers a noninvasive and 
precise analytical technique. The earliest research on identifying the structure of a-DCs 
was published in 1988. Creighton et al.[106] used an 80 MHz NMR spectrometer to study 
the structure of MGO hydrate. The 1H NMR spectrum showed four distinct signals for 
MGO in D2O, located at 1.38 (3H), 2.31 (3H), 4.82 (1H), and 5.27 (1H) ppm respect-
ively. The signals at 2.31 (3H) ppm and 4.82 (1H) ppm were attributed to aldehydrol, 
while the others (1.38 (3H) and 5.27 (1H) ppm) were assigned to dihydrate. The ratio of 
aldehydrol to dihydrate could be determined by comparing their signal intensities, 
which was found to be approximately 58-62%:38-44%. This allowed for elucidation of 
the structural conformation of MGO in D2O. In 2004, Nemet et al.[47] investigated the 
structural differences of MGO in water and organic solvents using 1H and 13C NMR 
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chemical shifts. The results revealed that MGO predominantly existed as a monomer in 
the organic solvent (dimethylsulfoxide, DMSO), with characteristic NMR shifts observed 
at 2.10, 3.30, 4.55 (1H, ppm) and 25.3, 54.5, 103.5, 203.6 (13C, ppm). Moreover, upon 
dissolving freeze-dried MGO in D2O, these NMR signals obviously shifted in both the 
1H and 13C NMR spectra, indicating the formation of double bond couplings between 
methyl protons and quaternary C-atoms. These findings imply that varying water con-
tent in solvents can modulate the structure of MGO leading to transformation from less 
reactive non-carbonyl form to more reactive carbonyl and dicarbonyl forms. In 2016, 
Salus et al.[107] used NMR technology and DFT-GIAO quantum chemical calculations 
to investigate the structures of malonaldehyde-glyoxal and malonaldehyde-methylglyoxal 
etheno adducts in DNA modification. The averaging of 1H and 13C NMR chemical 
shifts indicated rapid proton transfer between both enol forms of the compounds due 
to a low energy barrier in the b-dicarbonyl system. These works provided insights into 
understanding variations in MGO reactivity across different biochemical systems.

In the field of quantitative analysis, Donarski et al.[108] pioneered the use of NMR 
technology in 2010 to quantify MGO concentrations in various foods. By utilizing NMR 
signals from MGO monohydrate (2.306 and 5.287 ppm) and dihydrate (1.378 ppm), 
MGO concentration were determined, with a LOD of 11 mg/L and a reliability of 
95.4%. Compared to the LC-MS method, NMR spectroscopy proved more efficient as it 
eliminated the need for chromatographic separation or derivatization procedures. 
However, traditional NMR techniques face challenges when quantitatively analyzing 
complex samples. To address this issue, current efforts focus on improving instrumental 
systems and optimizing analysis algorithms. In 2012, Gresley et al.[109] utilized diffusion 
ordered spectroscopy (DOSY) NMR technology to quantify the MGO concentration in 
8 commercial manuka honeys. This approach enabled obtaining relevant information 
from samples within an hour using high-resolution NMR instrumentation, with a sensi-
tivity ranging from 1.3 to 7.5 ppm. On the other another hand, Spiteri et al.[110] inte-
grated NMR technology with chemometrics (principal components analysis, PCA) for 
analyzing the MGO content in 250 types of honey. This amalgamation proved valuable 
for rapidly distinguishing Manuka honey from other Oceania floral honeys, achieving 
an accuracy rate of up to 100%.

In the field of chemical reaction kinetics research involving a-DCs, NMR is exten-
sively applied, particularly in investigating organic aerosol formation with GO. In 2009, 
Haan et al.[111] employed 1H and 13C NMR techniques to examine the reaction proc-
esses between GO and five amino acids. The active form fractions, intermediate prod-
ucts, and final reaction products were analyzed using NMR technology to further 
elucidate the kinetics associated with amino acid loss during reactions with glyoxal at 
room temperature. This study demonstrates that the vapor GO reaction in aerosols can 
persist for several months, but the conversion of GO dihydrate to its reactive monohy-
drate can be induced by drying, resulting in a significant reduction in reaction time. In 
2015, Maxut et al.[112]] investigated the reaction process of spontaneous imidazole syn-
thesis from glyoxal using NMR techniques. They analyzed the structures and yields of 
GO oligomers and intermediate products under different pH conditions, revealing a 
kinetic competition between the pathway for imidazole formation and the pathway for 
acetal/oligomer formation in GO self-reaction. This study identifies a bottleneck in 
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achieving higher imidazole formation in environmentally friendly ammonium aqueous 
solutions at neutral pH. In 2016, Alexis et al.[113] used NMR spectroscopy to monitor 
the aqueous photochemistry process of GO and glyoxylic acid. Based on the 13C NMR 
peak at 93.22 ppm, which corresponds to GO, the source of GO and the related reaction 
mechanism of the photolysis of secondary organic aerosols were eventually revealed.

To sum up, it can be said that NMR spectroscopy is unquestionably a leading tech-
nique for fine structure analysis of a-DCs at relatively low concentrations (ppm levels). 
This is the only experimental method capable of determining the three-dimensional 
structure of a-DCs in solution systems. However, the NMR instruments are always 
large, expensive, and requires high technical proficiency for analysis, which limits its 
use outside of laboratories. To overcome this limitation, future development aims to 
miniaturize NMR instruments (such as NMR-on-a-chip)[114] and integrate chemomet-
rics to simplify the data analysis process.[115] These approaches aim to expand the appli-
cations of NMR technology beyond atmospheric and food media research, potentially 
including studies on pharmaceutical and biochemical dynamic processes.

Conclusion

In the last decade, given the significance of a-dicarbonyl compounds in disease research 
and food safety, multiple research groups have explored diverse approaches for detect-
ing a-dicarbonyl compounds. Most detections employ classic fluorescent spectrum 
detection techniques, renowned for their high specificity, low detection limit, simplicity, 
and cost-effectiveness. Ongoing innovative research on fluorescent probes, combined 
with near-infrared spectroscopy and fluorescence imaging, consistently improves and 
proposes enhanced detection technologies. Additionally, UV spectroscopy excels in dir-
ectly identifying a-dicarbonyl compounds through their inherent UV absorption prop-
erties. Its ease of operation allows seamless integration with HPLC, significantly 
improving accuracy in detecting dicarbonyl compounds in complex mixtures. NMR 
spectroscopy excels in fine structure analysis, while IR spectrum detection enables both 
qualitative and quantitative analysis of a-dicarbonyl compounds based on molecular 
characteristic vibrations. Collectively, spectral detection techniques for a-dicarbonyl 
compounds now offer substantial benefits for human health, disease treatment, and 
food safety. Ongoing research has introduced simpler, quicker, and more economical 
technologies for detecting a-dicarbonyl compounds, with potential applications in clin-
ical and fundamental scientific research, as well as daily life.
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