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Metasurface Enabled Multi-Target and Multi-Wavelength
Diffraction Neural Networks

Haoxiang Chi, Xiaofei Zang,* Teng Zhang, Guannan Wang, Zhiyuan Fan, Yiming Zhu,*
Xianzhong Chen,* and Songlin Zhuang

Benefiting from low power consumption and high processing speed, there is a
growing interest in diffraction neural networks (DNNs), which are typically
showcased with 3D printing devices, leading to large volumes, high costs,
and low levels of integration. Metasurfaces can desirably manipulate
wavefronts of electromagnetic waves, providing a compact platform for
mimicking DNNs with novel functions. Although multi-wavelength and
multi-target recognition provides a richer and more detailed understanding of
complex environments, existing architectures are primarily trained to classify
a single target at a specific wavelength. A metasurface approach is proposed
to design multiplexed DNNs that can classify multiple targets and spatial
sequences across various wavelengths in multiple channels. To realize
multi-task processing, the dielectric metasurface is designed based on phase
and wavelength multiplexing, which can integrate multi-target DNNs with
different tasks such as operating at distinct wavelengths and classifying
diverse targets. The efficacy of this method is exemplified through the
numerical simulation and experimental demonstration of recognizing a single
target with two wavelengths, two targets at a single wavelength, and two
targets at dual wavelengths. This compact metasurface approach enables the
design of multi-target and multi-wavelength DNNs, opening a new window to
develop massively parallel processing and versatile artificial intelligence
systems.
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1. Introduction

Deep learning, a kind of artificial neu-
ral network (ANN) model, draws inspi-
ration from the structures of human
brains, enabling training for analyzing
and processing input data with unprece-
dented capabilities in image processing
and pattern recognition.[1–5] Its unique-
ness in continuous training and learning
has led to applications in various fields,
including object detection, image classifi-
cation, speech recognition, and language
translation.[6–10] However, the deep learn-
ing is a data-driven algorithm and the re-
alization of its versatile functions (or par-
allel computing) in deep learning-based
architecture comes at the cost of com-
puting resources and large-scale datasets.
The frequent reading and writing of huge
volumes of data on existing electronic
computers inevitably leads to significant
energy consumption. Furthermore, the
mismatch between data reading and pro-
cessing speed can degrade computing
performance, which is another bottle-
neck of ANN.
Optical neural networks (ONNs) have

garnered significant attention recently
due to their advantages in parallel

processing, lower energy consumption, and high-speed
characteristics.[11–15] As one type of ONNs, all-optical diffrac-
tion deep neural networks (D2NNs) have been proposed and
demonstrated for image recognition and handwritten digit
classification.[16,17] In addition to these applications, D2NNs
have also been used to realize various functions such as optical
logic operations, pulse shaping, information encryption, and
OAM beam multiplexing/demultiplexing.[18–22] These unique
functions rely on constructing 3D printing diffractive surfaces,
which suffer from large volume, high cost, and low level of inte-
gration. Metasurfaces, 2D counterparts of metamaterials, have
shown remarkable capabilities in manipulating the wavefront of
electromagnetic (EM) waves, leading to novel applications, in-
cluding beam steering,[23–25] polarization conversion,[26–28] vortex
generation,[29–31] metalenses,[32–37] and holograms.[38–43] Unlike
traditional 3D printing devices that rely on phase accumulation
during propagation, metasurfaces can generate abrupt phase
changes at planar meta-atom interfaces, providing a flexible
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Figure 1. Schematic of multi-wavelength andmulti-target DNNs (MwMt-DNNs). The functionalities of multi-wavelength andmulti-target digital recogni-
tion are integrated into a single metasurface, which can be considered as a hidden layer. For the input of a dual digital image at two different wavelengths,
the recognition of wavelength, two digits and spatial sequence (the sequential order of the two digits) can be realized by focusing the incident light into
specified regions.

and ultra-compact platform for mimicking DNNs with uncon-
ventional functionalities. Currently, significant progress has
been made in optical analog computing based on metasurfaces,
including integrator, convolutional operator, differentiator, and
equation solver.[44–51] However, the current DNN devices are
primarily designed for classifying a single target at a specific fre-
quency. Multi-wavelength and multi-target recognition provides
a more detailed understanding of environments, making it more
attractive for advanced practical applications.
Nonetheless, to tackle the above challenges, we propose

a metasurface approach that integrates DNNs with various
functionalities into a multichannel metasurface, enabling the
mimicry of multi-wavelength and/or multi-target DNNs with
multiple functions. By training a single target at different
wavelengths and integrating phase requirements into a single-
layer metasurface, multi-wavelength DNNs (Mw-DNNs) are
constructed to simultaneously classify wavelength and target.
The multi-target DNNs (Mt-DNNs) for classifying multiple tar-
gets and spatial sequences can be realized by encoding dif-
ferent phase profiles into a metasurface. Furthermore, multi-
wavelength and multi-target DNNs (MwMt-DNNs) are designed
to simultaneously classify wavelengths, multiple targets, and
spatial sequences by integrating these functionalities into the
orthogonal helical channels of a metasurface. This robust ap-
proach not only enables improved processing capacity and re-
duced computer resource consumption but also opens an av-
enue for developing integrated DNNs and artificial intelligence
systems.

2. Design Methodology

Figure 1 illustrates a multiplexed DNN that can recognize digi-
tal images at multiple wavelengths using a single-layer metasur-
face. The input layer consists of two digits (e.g., “37” or “73”) that
are processed by a hidden layer containing many neurons with
different phase profiles. The output layer has eight detection ar-
eas. When a left circularly polarized (LCP) terahertz beam with
a wavelength 𝜆1 shines on the digits “37”, the diffractive field
is modulated by the neurons in the hidden layer, and then fo-
cused onto specific regions of the detection plane (red dashed
boxes). Conversely, when a right circularly polarized (RCP) tera-
hertz beam with a wavelength 𝜆2 shines on the digits “73”, the
transmitted waves are also modulated by the same neurons, re-
sulting in focused field distributions on different regions of the
detection plane (blue dashed boxes). The detection plane has four
rows and two columns of discrete regions designed to simulta-
neously recognize the wavelength and spatial sequence of the in-
cident digits. The wavelength can be identified by detecting the
focusing light beams in the regions outlined with red or blue
dashed boxes (𝜆1 for red, 𝜆2 for blue). Additionally, the spatial
sequence of the incident digits is determined by the focused field
in antidiagonal or diagonal detection areas (e.g., “37” with an an-
tidiagonal focus and “73” with a diagonal focus).
The DNNs for recognizing a digit at a pre-designed wave-

length (𝜆1 or 𝜆2) are trained based on the optical diffraction the-
ory. This approach enables the realization of multiplexed DNNs
by integrating different tasks, such as multi-wavelength and
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multi-target digital recognition, into separate channels within a
geometric metasruface. According to the Huygens–Fresnel prin-
ciple, each point on the wavefront can be considered as a sec-
ondary spherical source that forms a new wavefront at the next
moment based on interference. This means that each meta-atom
in the geometric metasurface can be viewed as an optical neuron
(that is a monopole source) connected to neurons in preceding
and following layers through diffraction. Based on the Rayleigh–
Sommerfeld diffraction theory, the underlying physics of DNNs
can be analyzed by examining the connection between the com-
plex fieldU(rl) from the lth layer andU(rl+1) from the (l+1)th layer,
which is described by the following equation:

U(rl+1) = t(r′) ∫ ∫ sU(r
l) ⋅ h(rl+1 − rl)dxdy (1)

The complex field U(rl) is transmitted after the digital mask,
where l is defined as 1 (l = 1) in this work. Additionally, the com-
plex field (U(rl+1)) is manipulated by a spatially varying complex
transmittance t(r′) expressed as t(r′) = Alei𝛾 l , whereAl is the am-
plitude and 𝛾 l is the phase. The impulse response h(rl+1 − rl) is
defined as follows:

h(rl+1 − rl) = zl+1 − zl

R2
( 1
2𝜋R

− 1
j𝜆
) exp(j2𝜋R

𝜆
) (2)

where 𝜆 is the incident wavelength, R =√
(xl+1 − xli)

2 + (yl+1 − yli)
2 + (zl+1 − zli)

2
, and j =

√
−1. Then,

we construct the forward propagation model of DNN using
a loss function and a stochastic gradient descent approach.
Specifically, the loss function is defined as the mean squared
error (MSE) to evaluate the difference between the input signal
and the detector output. Meanwhile, the stochastic gradient
descent algorithm is employed for iterative training to achieve
the desired output. Further details on model training, derivation,
and integration of multiplexed DNN with multiple functional-
ities are provided in Section S1 (Supporting Information). For
machine learning, we utilize classical datasets from the Modified
National Institute of Standards and Technology (MNIST). The
detection plane is divided into a variety of discrete sub-regions
to serve as the physical plane of network output for recognizing
identified objects. More detailed model training and derivation
are described in the Experimental Section.
To demonstrate multiplexed DNNs with multi-wavelength

and/or multi-target digital recognition, we design multichannel
metasurfaces comprising various anisotropic meta-atoms with
identical shapes but different in-plane orientations (Figure 2a,b).
Each meta-atom is optimized to be a quasi-half-wave plate, re-
sulting in structural parameters of L = 112 μm,W = 33 μm, H1
= 500 μm, H2 = 500 μm, and P = 130 μm in the x and y di-
rections. By rotating each meta-atom in its in-plane orientation,
the Pancharatnam-Berry phase modulationmechanism provides
an angle-dependent full phase range of [0, 2𝜋] for circularly po-
larized EM waves. In Figure 2c (top figure) for the incidence of
y-polarized (TE) or x-polarized (TM) THz waves, the transmit-
tance at 0.52 THz is nearly 95%, with a phase difference between
transmitted TE and TM modes of nearby 𝜋. When an optimized
meta-atom is illuminated by LCP THz waves, the polarization
conversion efficiency (defined as the ratio between the power of
transmitted cross-polarized THz waves and incident power) at

0.52 THz is nearly 88%, as shown in Figure 2c (bottom figure).
Figure 2d–f shows the fabricated samples for recognizing a sin-
gle digit at two wavelengths, classifying two digits and spatial se-
quence at one wavelength, and recognizing two digits and spa-
tial sequence at two wavelengths, respectively. The characteris-
tics of our fabricated samples are experimentally demonstrated
by near-field scanning terahertz microscopy (NSTM), as shown
in Figure 2g. The femtosecond laser beam is split into two parts:
one part generates terahertz (THz) radiation through a photocon-
ductive antenna, while the other part is coupled with a THz tip to
detect field distributions after the fabricated samples. Further de-
tails on the experimental setup can be found in the Experimental
Section.

3. Results

For a proof-of-concept implementation, an all-dielectric single-
layer geometric metasurface is theoretically designed and ex-
perimentally demonstrated to integrate DNNs with single-digit
recognition at two wavelengths, as shown in Figure 3. To demon-
strate multiwavelength digit identification, classical datasets
from the Modified National Institute of Standards and Technol-
ogy (MNIST) are used for machine learning. The digits 3 and
7 are exploited to demonstrate the Mw-DNNs. The design pro-
cess is schematically shown in Figure 3a. Neural networks for
dual-class object recognition are independently trained at 0.52
and 0.6 THz with 100 × 100 neurons (10 000 in total), and the
layer-to-layer axial distance is fixed at 10 mm. The training con-
vergence of MNIST with respect to epoch number is given in
Section S2 (Supporting Information). After training the digits 3
and 7 at both wavelengths, phase distributions are obtained for
each wavelength. These profiles are shown in Figure 3a. By in-
tegrating the two phase-profiles into a geometric metasurface,
the Mw-DNNs for recognizing a digit at two wavelengths can
be achieved. This realization enables us to express the corre-
sponding phase requirement for the geometric metasurface as
follows:

Φmw = arg[exp(i𝜙LCP) + exp(i𝜙RCP)] (3)

where 𝜙LCP = −𝜙𝜆1
and 𝜙RCP = 𝜙𝜆2

. It should be noted that the
trained phase profiles at 0.52 and 0.6 THz are respectively en-
coded into the LCP and RCP channels of a geometric meta-
surface, resulting in the Mt-DNNs with multi-wavelength digit
recognition. The fundamental principle for the superposition
of multiple functions at multi-wavelength with a uniform geo-
metric metasurface is discussed in Section S3 (Supporting In-
formation). The physical plane of the designed network out-
put is divided into four discrete detection regions to simultane-
ously identify the digits and incident wavelengths. As shown in
Figure 3b,c for the incidence of LCP THz waves at 0.52 THz,
the calculated field distributions in the detection plane are lo-
cated at the top left/right corner for the handwritten digit 7/3,
respectively. In contrast, for the digits “7” and “3”, under the il-
lumination of RCP THz waves at 0.6 THz, the output diffrac-
tion field distributions are focused at the bottom left and bot-
tom right corners, respectively (Figure 3d,e). The calculated en-
ergy distributions are shown in Figure 3f, which clearly shows
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Figure 2. Metasurface design and experimental setup. a,b) Schematics of a meta-atom fabricated on a silicon substrate. L, W, and H1 are the length,
width, and height of meta-atom, respectively. P is the period and H2 is the height of the substrate. c) The transmission spectra (top) of a meta-atom
under the illumination of x-polarized (blue curve) and y-polarized (red curve) THz waves. The polarization conversion efficiency is defined as the ratio
between the transmitted RCP THz waves and the incident LCP THz waves, which is shown in the orange curve (bottom). The optical images of fabricated
samples can classify a singletarget at two-wavelengths d), two-targets at a singlewavelength e), and two-targets at two-wavelengths f), respectively. g)
The experimental setup for demonstrating the multiplexed DNNs.

that the designed metasurface can simultaneously identify hand-
written digits and incident wavelengths. In the experiment, the
handwritten digits are fabricated based on film deposition and
ultrasonic stripping. Under the illumination of LCP THz waves
at 0.52 THz, the output field distributions are located at the
top left/right corner for the handwritten digit 7/3, as shown in
Figure 3b,c. For the incidence of RCP THz waves at 0.6 THz,

the measured field distributions in the detection plane are fo-
cused at the bottom left/right corner for the handwritten digit
7/3, as demonstrated in Figure 3d,e. Figure 3g shows the mea-
sured energy distributions, which demonstrate the capability of
the recognition of digits and wavelengths. The test results for
identified and misidentified instances of simulation and exper-
iment are demonstrated using the confusion matrix, as shown
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Figure 3. Calculated and experimental results of multi-wavelength DNNs (Mw-DNNs). a) Flowchart of Mw-DNN design: the digits “3” and “7” are
independently trained at 𝜆1 and 𝜆2, and then the phase requirements are encoded into a single-layer metasurface to realize a multi-wavelength digit-
classifier. Calculated and measured output-field intensity-distributions for b) the digit of “7” at 0.52 THz, c) the digit of “3” at 0.52 THz, d) the digit of “7”
at 0.6 THz, and e) the digit of “3” at 0.6 THz. f) Calculated and g) measured output-energy distribution maps. h,i) Calculated and measured confusion
matrices for the designed Mw-DNN. The labels of ①–④ correspond to the detection regions with the spatial sequences ranging from left to right and
from top to bottom.

in Figure 3h,i. The test accuracy achieves 97.5%/90% for nu-
merical/experimental statistical results. The experimental results
agree well with the numerical simulations, except for a slightly
lower accuracy which can be attributed to experimental errors.
The detailed discussions for alignment errors of Mw-DNNs are
given in Section S4 (Supporting Information). In addition to
recognizing handwritten digits, this approach can also be ap-
plied to realize fashion classification, as shown in Section S5
(Supporting Information). Such a multichannel metasurface can
also integrate DNNs for the recognition of digits and fashions
at different wavelengths, implying that our proposed approach
can simultaneously recognize digits, fashions, and wavelengths
(Section S6 (Supporting Information)). The detailed discussions

of the crosstalk between the two polarization channels (for the
recognition of a single digit) without wavelength difference are
given in Section S7 (Supporting Information). In addition, the
more numbers of classifications in a single channel or dual chan-
nels are numerically demonstrated in Section S8 (Supporting
Information).
The existing architectures of DNNs for digit or fashion identi-

fication are limited to recognizing a single target, which cannot
showcase unprecedented capabilities in massively parallel pro-
cessing. Therefore, identifying multiple targets (defined as par-
allel processing) is highly desirable. As the number of targets
increases, the multi-target DNNs (Mt- DNNs) are developed to
recognize the multiple targets and the spatial sequence of each

Laser Photonics Rev. 2024, 2401178 © 2024 Wiley-VCH GmbH2401178 (5 of 9)
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Figure 4. Calculated and experimental results ofmulti-target DNNs (Mt-DNNs). a) Flowchart ofMt-DNNdesign: the digits “3” and “7” are independently
trained at left and right half-space, and then the phase requirements are encoded into a single-layer metasurface to realize a multi-target digit-classifier.
Calculated and measured output-field intensity-distributions for b) the digits of “33” at 0.6 THz, c) the digits of “37” at 0.6 THz, d) the digits of “73” at
0.6 THz, and e) the digit of “77” at 0.6 THz. f) Calculated and g) measured output-energy distribution maps. h,i) Calculated and measured confusion
matrices for the designed Mw-DNN. The labels of ①–④ correspond to the detection regions with the spatial sequences ranging from left to right and
from top to bottom.

target. For instance, two targets of “3” and “7” can be composed
into “37” and “73”, which are two different values. To simultane-
ously identify each target (“37” or “73”) and the sequential order
of these two digits is crucial. Figure 4a illustrates the flow chart
for designing Mt-DNNs based on metasurfaces to demonstrate a
multi-target classifier. The inputmask is divided into two regions,
namely the left half-space and right half-space. The training con-
vergence of MNIST with respect to epoch number is provided
in Section S2 (Supporting Information). After training the digits
located at the left half-space and right half-space, two-phase pro-
files are obtained and then integrated into a single metasurface
to mimick the Mt-DNNs for recognizing multiple targets and se-

quential order recognition. The encoded phase profile in such a
metasurface can be expressed as:

Φmt = arg[exp(i𝜙PL) + exp(i𝜙PR)] (4)

where 𝜙PL is the trained phase for identifying the target at the left
half-space, while 𝜙PR is the trained phase for identifying the tar-
get at the right half-space. Figure 4b (the top two figures) numer-
ically illustrates handwritten digits and output diffraction field
distributions for THz waves at 0.6 THz. The focused electric-
field distributions primarily occur at the top left and top right cor-
ners, demonstrating double digits of “33”. For handwritten digits

Laser Photonics Rev. 2024, 2401178 © 2024 Wiley-VCH GmbH2401178 (6 of 9)
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Figure 5. Calculated and experimental results of multi-wavelength andmulti-target DNNs (MwMt-DNNs). a) Flowchart of MwMt-DNN design: the digits
“3” and “7” are independently trained at left and right half-space and different wavelengths of 𝜆1 and 𝜆2, and then the phase requirements are encoded
into a single-layer metasurface to realize a multi-wavelength and multi-target digit-classifier. b,g) The input dual-digits. c,e) Calculated and h,j) measured
output-field intensity-distributions. d,f) Calculated and i,k)measured output-energy distributionmaps. l,m) Calculated andmeasured confusionmatrices
for the designed MM-DNN. The labels of ①–⑧ correspond to the detection regions with the spatial sequences ranging from left to right and from top to
bottom.

“37”, “73”, and “77”, the calculated diffractive fields in the de-
tection plane are focused at antidiagonal, diagonal, and bottom
corners (Figure 4c–e), respectively. Fabricated masks and mea-
sured diffractive field distributions are shown in Figure 4b–e.
Calculated and measured energy distributions are illustrated in
Figure 4f,g, demonstrating the designed metasurface’s ability to
simultaneously recognize digits and their corresponding sequen-
tial order. The test accuracy reaches 97.9% and 90% between nu-
merical simulations andmeasurements, as shown in Figure 4h,i.
This Mt-DNN can be extended to recognize multiple fashions or
hybrid targets between digits and fashions, with their sequen-
tial order discussed in Sections S9 and S10 (Supporting Informa-
tion). The crosstalk for the input digits in the left/right half-space
using the phases in classifying digits in the right/left half space
and the only one phase training for the recognition of dual digits
are given in Section S11 (Supporting Information).
Furthermore, our proposed approach can be extended to re-

alize a multi-target and multi-wavelength classifier (or MwMt-

DNN). The flow chart for the design of a geometric metasur-
face that can simultaneously recognize multiple digits at multi-
ple wavelengths is shown in Figure 5a. The input mask is divided
into left and right half spaces, with targets trained independently
at two wavelengths in these regions. For dual-target recognition
at two wavelengths, four-phase profiles are obtained after train-
ing, which are then encoded into a geometric metasurface as fol-
lows:

Φmt−mw = arg[exp(−i𝜑
𝜆1_L

) + exp(−i𝜑
𝜆1_R

)

+ exp(i𝜑
𝜆2_L

) + exp(i𝜑
𝜆2_R

)] (5)

where the phase profiles (𝜑
𝜆1_L

, 𝜑
𝜆1_R

) at 𝜆1 (0.52 THz) are inte-
grated into the LCP channel while phase profiles (𝜑

𝜆2_L
, 𝜑

𝜆2_R
)

at 𝜆2 (0.6 THz) are encoded into the RCP channel. The training
convergence of MNIST versus epoch number is provided in Sec-
tion S2 (Supporting Information). For the input digits “33” under
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the illumination of LCP THz waves at 0.52 THz, the diffractive
fields at the detection plane are focused on the top left and top
right corners, as shown in Figure 5b,c (the top two figures). Our
designed metasurface enables recognition of handwritten digits
“37”, “73” and “77” at this wavelength, as numerically demon-
strated in Figure 5c. The energy distributions shown in Figure 5d
are consistent with our predesigned results. When the incident
frequency is switched to 0.6 THz, our metasurface can identify
dual digits and their corresponding spatial sequence, as depicted
in Figure 5e,f. The fabricated samples are presented in Figure 5g,
while the measured results are shown in Figure 5h–k which are
in agreement with our simulated results. Figure 5l,m display nu-
merical and measured confusion matrices, demonstrating test
accuracy of 94.6% and 85%, respectively, for statistical results.
The detailed discussions of the crosstalk between the two helical
channels (for the recognition of dual-digit) without wavelength
difference are given in Section S7 (Supporting Information).

4. Conclusion

Different from the typical demonstration of neural networks
with novel functionalities that involve 3D printing devices or
propagation-phase-based meta-devices, this work aims to mim-
ick multiplexed DNNs with unprecedented capabilities in mas-
sively parallel processing with a compact metasurface platform.
By training each target at different wavelengths andmultiplexing
various functions into single or dual helical channels of themeta-
surface, we have demonstrated the recognition of a single target
at two wavelengths, two targets at a single wavelength, and two
targets at two wavelengths. Our designed DNNs consist of a sin-
gle hidden layer realized with a single-layer geometric metasur-
face, exhibiting unprecedented capabilities in identifying digits,
fashions, wavelengths, and spatial sequences between multiple
targets. This multiplexed DNN architecture opens up new possi-
bilities for further integrating versatile functions into multichan-
nel metasurfaces. To quantify the match between numerical test-
ing results and experimental demonstrations, 80 samples (i.e., 20
samples for single digits and 60 samples for dual-digit) are fabri-
cated as input masks in this work. The test accuracy experiment
is relatively smaller than that in numerical simulation. We ac-
knowledge that the more samples, the higher the accuracy in the
test accuracy, and we utilize a moderate approach, i.e., five dif-
ferent inputs per digit/dual-digit, to experimentally demonstrate
the test accuracy. Although the test accuracy in the experiment is
relatively smaller than that in numerical simulation, they are gen-
erally demonstrated the recognition rates of our fabricated meta-
surfaces inmimickingmulti-target andmulti-wavelength DNNs.
Furthermore, designing multi-layer meta-neurons could enable
more complex recognition tasks or higher classification accuracy.
The robust approach presented here can also be extended to de-
sign reconfigurable DNNs based on tunable meta-devices real-
ized by phase-change materials, liquid crystals, and other tech-
nologies.
In summary, a metasurface approach is proposed to real-

ize multiplexed DNNs (e.g., Mw-DNNs, Mt-DNNs, and MwMt-
DNNs) that can process multiple tasks in parallel. To validate
this concept, we have designed and fabricated a single-layer geo-
metric metasurface capable of recognizing a single target at two
wavelengths, two targets at one wavelength, and two targets at

two wavelengths. Unlike traditional DNNs with a single function
in classifying digits or fashions, our proposedmultiplexed-DNNs
can not only classify these patterns but also identify the corre-
sponding wavelength and spatial sequence between multiple tar-
gets. This versatile approach may have potential applications in
high-speed parallel computing and multi-skilled artificial intelli-
gence systems.

5. Experimental Section
Training: The design of a single-layer diffractive neural network was

performed using Python (v3.9.16) and TensorFlow (v2.6.0, Google Inc.) on
aWindows 10 operating system (Microsoft) with 2× Intel(R) Xeon(R) CPU
E5-2696 v4@2.20 GHz central processing unit (CPU, Intel Inc.), 192 GB of
RAM, and a GeForce RTX 4080 Ti graphical processing unit (GPU, Nvidia
Inc.). The MNIST and Fashion-MNIST datasets are used for training with
a batch size of 8, over 10 epochs, and a learning rate of 0.005. The mean
square error was employed as the loss function for training the MNIST
datasets, and the desired phases of a hidden layer for network training are
updated based on the stochastic gradient descent algorithm.

Experimental Setup: To detect the electric-field intensity distributions
after the fabricated samples, a Near-Field Scanning Terahertz Time-
Domain Spectrum Microscopy System (NSTDSM) was established, as
shown in Figure 2g. A femtosecond laser with a central wavelength of
780 nm was divided into two parts. One part of the laser beam was guided
into the photoconductive antenna emitter to generate THz waves for the
characterization of the designed sample. Simultaneously, the other part
of the laser beam was coupled into a single-mode fiber (with a length of
10 cm) and shines on the THz tip. The THz tip was mounted on a 3D
translation stage to detect the electric-field intensity distributions. The po-
sition of fabricated samples is fixed, while the electric-field distributions
are obtained by shifting the THz tip.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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