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Off-the-Grid Sparse Imaging by One Dimensional
Sparse MIMO Array

Li Ding, Shuxian Wu, Xi Ding, Ping Li and Yiming Zhu

Abstract—Conventional multiple-input multiple-output (MI-  radar detection, mobile and wireless communication and so on
MO) technique applied into the millimeter-wave (MMW) and  [6]-[9]. Related to MIMO imaging in MMW and THz band,
terahertz (THz) imaging applications would suffer from the large the reference [10] presented an accurate 3-D reconstruction
number of array elements due to their short wavelengths. In this . - . -
paper, to reduce the array elements for azimuth-range imaging, by operatlng 32 transmitters and 32 receivers in the 100 GHz-
a one-dimensional (1-D) sparse MIMO array is introduced, MIMO imaging system. The reference [11] proposed>e4l
which combines with the wideband emitted signal to achieve 2-D MIMO imaging system operating at 90 GHz with 7.5 GHz
imaging in the near field. Provided with these greatly reduced pandwidth to obtain the resolution 8f2° in azimuth. A 300
spatial samples measured by the sparse array, an off-the-grid Gy, MMW radar system that operates at a stand-off distance

sparse imaging algorithm is proposed to recover the arbitrarily . . o .
distributed scatterers in 2-D plane. Particularly, the proposed of around 7 m is documented in [12] to utilize 8 transmitters

approach takes advantages of the MIMO geometry and matrix and 16 receivers in a bistatic mode. However, among the
pencil (MP) method. It utilizes the echo in wave-number domain above mentioned MIMO systems, the array-element spacing
which is featured by the MIMO geometry to make a lossless in at least one party of the transmitter array and the receiver
dimension reduction from the 2-D unknown position of each array is constrained by the sub-wavelength based on Nyquist

scatterer into a local 1-D frequency. After estimating those local | Th the followi tial lution bet the t
1-D frequencies by MP method, a MIMO-structure-determined aw. fhen, the foflowing spatial convolution between the two

filter is developed to fulfill the inverse mapping and finally —arrays would achieve spatially full sampling over the spanned
achieve imaging without the pairing problem. Simulations and aperture length [13]. This renders the increased scale of arrays
experiments verify the effectiveness of the proposed approach. to obtain large spanned aperture length for high azimuthal
Index Terms—MIMO, sparse array, MMW, THz, near field. resolution. This situation obviously would be aggravated in
the MMW and THz bands due to their short wavelength.
In this paper, we are addressing the above concerns by
adopting a 1-D MIMO geometry with both the sparse trans-
Synthesized aperture radar (SAR) technology is of interesitter array and the sparse receiver array. In such a way, even
in the imaging fields, especially in the security-related applif a long spanned aperture length is required, the number
cations by adopting millimeter-wave (MMW) and terahertpf the physical array elements would be greatly reduced.
(THz) bands [1]-[4]. Plenty of classical SAR algorithms ardlevertheless, it leads to an under-sampling condition for
related to fourier transform (FT), e.g., range-doppler algorithimaging, which would make the performance loss of FT-based
(RD), range migration algorithm (RMA), which rigorously re-algorithms. Currently, a popular way to deal with the under-
quire sub-wavelength sampling interval to have a performandetermined inversion problem is compressed sensing (CS)
guarantee by Nyquist law [5]. This naturally causes the dendet], [15]. CS-based algorithm tacitly assumes that the scatter-
spatial sampling and will lead to the heavy system cost @rs exactly lie on the predefined grids. This obviously violates
signal acquisition over the MMW and THz bands. the nature of scatterers as they are arbitrarily distributed in
Recently the multiple-input multiple-output (MIMO) tech-space. The off-the-grid scatterers thus cause the basis mis-
nology, which is realized via simultaneous operation of spaatch [16] and make CS-based algorithm less effectiveness
tially diverse transmit/receive arrays to speed up the signal 4t7]. Therefore, we propose an off-the-grid sparse imaging
quisition, has attracted great attention in microwave imaginglgorithm to achieve the imaging of arbitrary scatterers. The
proposed algorithm makes a combination of 1-D MIMO
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y transmitter to thd-th scatterer and then to theth receiver.
That is, 7, (1) is of the form as

Tn,m(l)
3 AV (@m — )2+ (Ro — y1)? + /(@rn — 20)? + (Ro — 1)?
c

2

a scatterer of the target

" -
Imaging scene center
-

°

o
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v
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N wherec is the light velocity.
After the down-conversion by multiplying the signal of
e~727ft the orthogonal matched filter between the baseband
f signal atn-th receiver and then-th transmitted signal yields
[}

T Yo (t) = 3 o(rr)e 2T O (1 7, (1) © i (2)

=1
©)
Fig. 1. THz MIMO azimuth-range imaging Taking the Fourier transform (FT) of (3), we have

—7127(fe Tm.n (1
of-principle experiments of MIMO geometry are then devise§fnn(f) = F {Ym.n(t)} = Un(f) > o(ry)e 2t DT

through a time-division-multiplexing-like method. Both the =1 4)

simulations and experiments are conducted in the 26.5 GWEere]-‘{u (t) ® u*,(t)} is the power spectral of ther-th
m m

- 40 GHz band. Compared to the FT-based algorithm withayeform with f € [0, B], and B denotes the bandwidth of

different scale of measurements obtained both by MIMQ,-h transmitted signal. Sindé,,(f) is known, an alterna-
geometry and by monostatic SAR, the results demonstrate ]5%')’ concise form of (4), denoted as_.(f), is

effectiveness and validity of the proposed imaging method.

Y?l n —q
znm(f) = [}77(;];) E o(r)e p2r(fetHrmall) ()
1. SIGNAL MODEL m =1

Due to the short range between the array and the targets, the
The geometry of near-field MIMO imaging system irexponential term in (5) denotes the spherical wave. The term
azimuth-range plane is shown in Fig.1. Without loss of genex; ,,,(1) in (5) can be approximated through Taylor expansion
ality, here we adopt the 1-D uniform transmitter- and receivefit8], i.e.,
array to simplify the analysis. There are M transmitters with 1 1
the array interval ofi;, and N receivers with the array intervalr, , (1) ~ - (\/ 2+ Rg) + (\/ a2, + Rg) —— (L4101
of d,. Thus them-th transmitter and and the-th receiver ¢ ¢ ©6)

is located at(z¢m, Ro) and (x.., Ro), respectively, where WhereTy, = (sin fum, €05 Opmn ), T = (500, 008 Opn), Oonm

Tem = (m—1)dy — Md; /2 andz,, = (n—1)dr —Ndy/2, Ry and o, are the azimuth angles of the-th transmitter and
denotes the distance between the baseline of the array and, the . . . .
themn-th receiver, respectively, as Fig.1 shows. Since the term

center of the scene. Conventionally, at least one party;of | 5 5 > 5\ i ,
andd, is constrained to the sub-wavelength by Nyquist IavyE,SV Tim T ROP + Tirn +hg5)in (6_) is a known quantity )
targets, it can be easily compensated and will

and this leads to the finally full sampling in the azimuth. It ifndependent o Itcar . npens
obvious to have that the corresponding system cost will sc&1g omitted in the following discussion for simplicity.
up in the MMW and THz band. Therefore, here we consider BY 1etting K, ..(f) be £ (I,,,, 4 1,.,), the signal in (5)
the 1-D sparse MIMO array, where both andd, need not then can be further expressed as
meet the sub-wavelength requirement. L

All the transmitted signals are orthogonal to each other. The 2, (f) = Y _ o (r;)e?>™nm (re
m-th emitted signal iss,,,(t) = u,,(t)e??™f<t with complex 1

=1
envelopew,,(t) and carrier frequencyf.,, m = 1,..., M. L ' N ) (7)
Therefore, assuming that there drscatterers in the interested = Z o (ry) el Ko m (Dot Ks n (Nwn)
scene, the echo at theth receiver is =1
" where K,, .. (f) = (K} ,.(f), K} ,.(f)) denotes a sam-
ling in the wave-number domain. In specifi&? . (f) and
n t) = m t— n,mn l 1 P M
yn(t) mz::l;a(rl)s ot = Tom (D)) @) Ky .(f) are of the forms as
wheren =1, ..., N, o(r;) is the complex reflection coefficient Ky m(f)= M(sin Ot + in 0,yy)
of thel-th scatterer whose position is denoted-as- (z;, y;), L. i f (8)
I =1,...L, and 7, (I) is the path delay from then-th KY . (f) = °T(COS Ot + cOS O
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From (7) we can see that the wave-number-domain echoThen, the corresponding Hankel matrix of, ,, can be
zn,m(f) and the reflectivity of the scatteref(r;) satisfy the stacked as follows, denoted s, ,,
FT relationship. This indicates that a 2-D reflectivity can be

obtained by an 2-D inverse FT if the echoes are collected 2n.m(0) Zn.m(1) 2nm(Q—1)
subject to Nyquist law. Obviously in the current case ofZnm = (14)
1-D sparse MIMO array, this condition is not guaranteed. Znm (I — 1) zpm(1) Znm(Q — 1)

Besides, CS-based reconstruction suffers from the well-known . . . .
erel is the pencil parameter denoting the window length,

basis mismatch problem and is hard to reconstruct arbitrar ' ) 4
e %h column ofZ,, ,,, is a windowed segment of the matrix

distributed scatterers. Therefore, to address these problemsé 0 1 1
off-the-grid sparse imaging by employing the MIMO geometryAUENCE 2n.m (0), zn,m (1), o ’Z"“’?(Q B )}
and the spectrum-estimation-based high-resolution technique Step 2:Local Frequencies Estimation

is proposed. The Hankel matrixZ,, ,, can be decomposed as follows

Lo = UDEMNM (15)

[1l. OFF-THE-GRID SPARSE IMAGING ALGORITHM , : . : .
whereU?™ and V™ are the unitary matrices consisting of

Assuming that thén, m)-th channel (i.e., the path from thethe eigenvectors 0Z,L7,,,LZ,I;{m and Z{;{mZn,m, respectively,
m-th transmitter to the target and then to the¢h receiver) andX!-™ is the diagonal matrix containing the singular values

has@ samples in frequency domain, igsth sample is of Z,, . The superscrip([-)H denotes the conjugate transpose
operator.
Znm (q) = Z O_(rl)ejQW(K';‘;'m(q);cl-i-Kﬁ,m(q)yl) (9) Let U;L:{” and U;L7,2,,L be
= U =U00"(1:Q - 1) (16)
whereq = 0, ..., — 1 and the discrete form of (8) is U?jzm =U™"(2: end,:) (17)
" Jet+ %q . . According to the theory of MP, the 1-D local fre-
K} (@) = ————(sinOym + sinb.p) (10) quencies, i.e., {Bnm(r;);l=1,2,---,L} are the gen-
f.+ Eq eralized eigenvalues ofU.3y" — AU.Y", denoted as
KY ,.(q) = — ’ ’

(cosBim + cosbry) {Bn ()il =1,2, - ,L}.

Recalling the composition of azimuth and frequency sam-+ Step 3:Scatterer Position Recovery
pling in the wave-number domain as (10) shows, we can(11) builds the relationship between the 2-D position of the
replace the 2-D position of thieth scattere(z;,y;) to a 1-D scatterersr; and its 1-D frequency3, ,,,(1). Therefore, we

local frequency, denoted &, ,,(r;), i.e., define aM N x 2 MIMO-structure filter, denoted a$v, and
B its (n, m)-th row takes the form as
Brm(r1) = @q(Itm + 1) 1 (11) [W(’n,’m),lv W(n,m)ﬂ}
. . B . . (18)
Thus, (9) can be rewritten into a more compact 1-D form o) (810t + 8iN0Or, O8Ot + O8Oy
as
L 4 Then, stacking all thes, m(r;) as
Znm(q) = Z 5(rl)632wq6n,m(rz) (12) X ' A
=1 Bra(r) - Pra(re)
ok 3 = . 19
whereg (r;) = U(rl)eﬂw%(ltm-i-lm)rrl. B A . (19)
Bnm(ry) - Bn(rr)
A. Algorithm The 2-D positions of scatteregs = [ry, - - - ,rL]T can be
_ recovered via )
Based on (12), to address the problem of the high-resolution g=(WIW) 'wig3 (20)

imaging without grid dependence in the under-sampling condi- o
tion, we take into account the spectrum-estimation techniquee Step 4:Complex coefficients recovery

e.g., the matrix pencil (MP) algorithm, to estimaig ,,,(r;). The signal in (12) can be rewritten as
The detailed off-the-grid sparse algorithm is depicted as fol- i
lows, by combing the MP algorithm (i.e., stepl-step2) and the Znm (4) = Dy (@) Hpmo (21)
MIMO geometry (i.e., step3-step4). where

« Step 1:Hankel Matrix Construction b ) o] T

_ —J27qBn,m (7 —J27qBn,m (7

With respect to each transmitter-receiver channel, the ecmﬁm(‘n - [e i SRR - }

can be collected as H, ., = diag (ej27r%(ltm+[7,”)Tr17 o ’ejzwf?c(ft,,n“,,n)arm)
T
Znm = [20m(0) 0 2nm(Q—1)] A3 o=[o(r), o))"
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Then,z, ,, in (13) can be further expressed as TABLE |
THE PARAMETERS OF THE CONSIDEREIMMIMO RADAR
_1NH
Znm = D"W”H”vma (22) Parameter Variable Value
h The length of the array in the x-direction Ly 0.51m
where T The distance between the Antenna array
Znom = [Znm (0) -+ Znm (Q — 1)] baseline and the imaging scene Ro 0.5m
D, = [Dn m (()) -Dypm (Q — 1)] Center frequency of the transmitted signal f 35GHz
Wavelength A 1.64mm
Obviously, (22) shows that the complex coefficientsoof Spatial spacing by Nyquist law ar 0.43cm
can be estimated through solving those linear equations over Bandwidth B 13.5GHz
all channels, i.e., The sampling number in frequency domain Q 80
Theoretical azimuth resolution by Nyquist law  p, 0.78cm
- 1 -1 H -1 Theoretical range resolution by Nyquist law 1.11cm
7= N x M ZHn,m(D’mmDn,m) Dn,mzn,m (23) 9 vy va Ly
where the mean operation is taken over all channels to improXe . .
. Simulations

the estimation accuracy.
Here, we compare the proposed algorithm with the tradition-
al FT algorithm and OMP algorithm (a classical algorithm in
B. Performance discussion the CS field).

__._The estimation error, denoted &5 is calculated as
It can be observed from step 1-step 4 that the estimation

performance of the proposed algorithm for arbitrarily dis- L4
tributed scatterers is determined by their local frequencies E = ZZ [£1 — 1l (28)
estimation, i.e.,{8,,m(r;)}. Therefore, a brief discussion =1

gbout t_he e_stimation yariance Ofm(r:) in ter_ms of C.RB wheret; = (%;,9;) andr;, = (z;,y;) denote the estimated
'S p:]owded n Applend|x Af (see [19] for more rl]nforkr]natlon). and the real position of théth scatterer, respectively. It is
Then, we can also see from step 1-step 4 that the COMPUIAS noting that to avoid the influence of the mainlobe in

tion complexity of the proposed "’,",90“,‘“”‘ IS fogused on step ET algorithm, its estimation error is calculated by taking its
related to the matrix decomposition involved in MP metho% peaks

Based on [19], the computation complexity of the proposed Firstly, the imaging by 2-D FT-based algorithm under the

algorithm can be estimated about full data set and under-sampling is tested, respectively, to
) 17 investigate the influence of sampling on FT performance. In
FQ-I+1)++1 (24)  the case of full data set, the receiver spacing is set as d* ,
and the transmitter spacing is sets= Nd*, whered* = g
The computational complexity of 2-D FT [20], in comparisongenotes the sub-wavelength sampling interval by Nyquist law.
is about In such a way, we can have 4 transmitters and 30 receivers, i.e.,
1 M =4 N = 30. In the case of under-sampling, the receiver
Z(ZOQQQ)Q (25) spacing and the transmitter spacing is setdas= 8d* and
= Nd, = 64d*, respectively, and such thaf = 4, N = 8.
is means that there is under-sampling for a factor of 8. By
arbitrarily choosing 6 scatterers in the azimuth-range plane, as

d
The ratio of the computational complexity of the proposeg‘h
algorithm over that of the 2D-FT based method is

2(Q—T+1)+ 4 shown in Fig.2, the comparison between (a) and (b) represents
T 3 (26) the failure by FT algorithm in the case of under sampling,
7(log2Q)@Q and spatial under-sampling makes the ambiguity of imaging

a{[] azimuth. Hence, the error in Fig.2.(b) is referred to infinity,
denoted as Inf.
Then, under the under-sampling condition, the imaging
comparison is taken between OMP and the proposed algo-
The theoretical resolution in the azimuth dimension (alod§M- For the same scatterers as that in Fig.2, the imaging
the z-axis) and in the range dimension (along thexis) are results of two algorithms are shown in Fig.3 (a) and (b),

which would be examined numerically as a function of p
rameter | and Q in the Simulation section.

IV. SIMULATION

respectively given as respectively. Obviously, it demonstrates that our proposed
approach can provide a better imaging than OMP, while the
cR c 27) performance of OMP severely depends on the match between

Pz

the meshgrids and the scatterers positions. Moreover, the
comparison between Fig.2 (a) and Fig.3 (b) shows that the

The parameters of the considered MIMO geometry are sgbposed algorithm can outperform FT algorithm with the full
as Table | shows. data set.

= FMNd ™ T 9B
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Fig. 2. Image by the FT algorithm: (a) Full data set with = dY, Fig. 4. Imaging performancel{ = 8d;, M=4, N=8): (a) with the varying
E=0.057mm). (b) Under-sampling witli. = 8d;:, E=Inf) of the x-dimensional distance between two scatterers. (b) with the varying of
the y-dimensional distance between two scatterers.

© True scatterer
= Estimated scatterpr 11
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0.25 . = Cramer—Rao bourjd
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Fig. 3. Under-sampling imaging with,, = 8d;: (a) OMP, E=0.09 m, (b)
Proposed algorithm, E=0.04 m.

Next, the imaging performance of the proposed algorithm “%o 2 30 40 as 50

is tested in terms of estimation err@t, as shown in Fig.4,

where the result by FT with full sampling is taken as a _ _

comparison. Fig.4. (a) and (b) illustrate the performance verq'jé% 5. The inverted sample variance of one frequeAigyversus SNR. Q =

the x-dimensional and y-dimensional distance between two

scatterers, respectively, and show that the proposed algorithm

can attain the theoretical resolution in both dimensions wifri9-6.(), (b) and (c), where the threshold is set as 10, 50, and

greatly reduced measurements. 100, respectively, it can be seen that@g(i.e., the number
Provided with the CRB in appendix A, here we take on@f Samples) increases, the range [ofill be expanded for

scatterer as an example to test the estimation performancégfepPtable complexity of the proposed algorithm. In other

the algorithm in comparison with its theoretical limit. The¥ords, the more the number of samples is, the greater the
parameters are set a@ = 80, (z1,y1) = (0.1,0), range of I can be. Due to the relative small compared

0.015,51 = 1. Fig.5 shows the estimation variancefwith With the size of data), it should be noted that the proposed

respect to the varying signal-to-noise (SNR). The definition @.}gorlthm !s_swtable for_the scene with small size of data set.
SNR is given in appendix A. It is clear from Fig.5 that thalowever, it is worth noting that to reduce the size of data set
estimation accuracy would be improved with the increase t5f the original intension of the presented article, and thus our
SNR. The different curves with respect to different value @roPosed algorithm is efficient and of practical application to

| indicates that the parameter | works as a tuning paramef@Me extent. Besides, Fig.6 (d) shows that if the requirement
which can be adjusted to increase the estimation accura®y), Computational complexity can be somehow relaxed, the
When I = 31, i.e., approximately one third of Q, the'@nge of | would increase. This means that the detection

estimation variance can come close to its CRB, and this R§formance of the proposed algorithm can be improved.
consistent with the analysis in [19] and [20].

In Fig.6, the computation complexity of the proposed aB- Experimental Results
gorithm is examined with varying and @. The ratio in Assuming that the under-the-test targets are static, the
(30) is compared with a certain threshold, where the resutultiple input and multiple output of MIMO geometry is
corresponding to the ratio less than the threshold is set assitpulated by a single input and a single output through a time-
otherwise is set as 0. It is obvious to observe from Fig.6 thdivision-multiplexing-like method, as shown in Fig.7. That is,
the proposed algorithm has a higher computation complexttyo channels of the VNA are taken as the input, denoted as
than its counterpart FT-based algorithm. This result is quifeX and the output, denoted as RX of MIMO, respectively. The
reasonable and well-known due to the matrix-decompositionultiple inputs and multiple outputs are collected at different
property of spectrum-estimation technique. However, frotime and different spatial positions by moving TX and RX

35
SNR (dB)

1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2873687, IEEE

Sensors Journal

IEEE SENSORS JOURNAL, VOL. , NO., 6

40, 1 1
30 75
g 20 o 50 Transtter antenna
10 25
0 0 0 0
0 |5 10 0 10 20 30 40
I
(@) (b)
200, 1 100
150 800
600 ratio=200 3
3100 e} )
400 ratio=100
50 ratio=50
200 ratio=10
0 )~
% 20 40 60 © 0 10 20 30 40 50

| | Fig. 7. Photograph of the MIMO imaging system

(c) (d)

Fig. 6. Computational complexity:(a) the ratio thresholdl@s (b) the ratio
threshold is 50. (c) the ratio threshold is 100. (d) the boundaries with resp
to four different ratio thresholds.

y(m)

along the linear trail. The 3 dB beamwidth of the antenn:
is 30°. The distance between the linear trail and the cent
of scene is 0.25 m (i.€?p), and other parameters are set th
same as that in Table 1.

Firstly, the imaging results are checked by the propos
algorithm and FT under the full data set, shown in Fig.¢
The targets are two metal cylinders, as Fig.8 (a) shows.
is found from (b) and (c) that, the proposed algorithm he
better imaging performance, while the FT algorithm woul

y(m)

expand the reconstructed scatterer due to the mainlobe of pt 0. S

spread function (PSF). As shown in (d), the shape of PSF ©

unpleasing partially because of the limited beamwidth of the _ _ _

adopted antennas. Fig. 8. Imaging results of two metal cylinders in MIMQL( = d}) (a)

) Photograph of two metal cylinders and the distance is 2.5 cm in the x direction
The comparison between OMP and the proposed methodis 5 cm in the y direction (b) Image by the proposed algorithm. (c) 2-D

conducted under the condition of the full data set and partig¥age by FT (d) 3-D image by FT
data set, respectively. The targets are multiple metals cylinders,

shown in Fig.9 (a). It is found from (b) and (c) that Ourne ative factor, and it constraints the efficient field of view of

proposed approach outperf(_)rms OMP unqerfyll data set. Th§ R. Another possible factor is that the effective scattering
for the case of under-sampling, as shown in Fig.10, we can see

that OMP is hard to achieve the imaging due to the mismated of the metal cylinder is too small to make an effectively

problem of the uniform meshgrids and the arbitrary positior%rgcelvmg by_ mor_lostgtlc .SAR' However, MI.MO geor_nc_etry due
. 10_the multiple illumination and the multiple receiving can

of)(t)f;eins]gatitr(]arerz,rfgl:rtn;hnieproposed algorithm can mamtau]qaave the spatial diversity gain to bring back more information
g ging p ' the scatterers, and can maintain a good imaging in the face

Then, for the same scene of interest, the imaging of L . ;
' . ' of limited beamwidths and the small scattering area of targets.
based on monostatic SAR and on MIMO are compared to g g

discuss the influence of geometry difference on imaging per-

formance. The experiment of near-field SAR imaging system V. CONCLUSION

is shown in Fig.11. The synthesized aperture length is as théAn off-the-grid-sparse imaging algorithm based on 1-D
same as that in MIMO. The imaging result by SAR anMIMO sparse array has been proposed for MMW and THz
by MIMO is shown in Fig.12 (a) and (b), respectively. Iinear-field imaging. The sparse MIMO geometry adopts the
is obvious to have that the imaging performance by MIM@parse arrays both in transmitting and receiving to make
geometry is much better than that by monostatic SAR. Thesedecrease in physical array elements, while the imaging
are some aspects to affect the performance of monostatic Spétformance is then maintained by the proposed off-the-grid
in our experiment. The limited beamwidth of antenna is orsparse imaging algorithm. The proposed algorithm makes use

1558-1748 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2018.2873687, IEEE

Sensors Journal

IEEE SENSORS JOURNAL, VOL. , NO.,

0 . i -0. 0
x(m) x(m)

(b) (c)

Fig. 9. Imaging results of four metal cylinders based on MIM&metry

(d» = d¥ (a) Photograph of four metal cylinders and the distance is 5 cl

-0.1 -0.1

0 0
x(m) X(m)
() (b)

Fig. 12. Imaging results of four metal columnsin differentaging system
(dr = d}) (a) Imaging by FT based on MIMO geometry. (b) Imaging by FT
based on monostatic SAR

the estimation performance. Then, the inverse mapping from
1-D parameter to 2-D position is based on the solution
of a series of linear equations and thus avoids the pairing
problem. The validity of the sparse MIMO geometry and the

in the x direction and 10 cm in the y direction (b) Imaging by the proposgdroposed algorithm has been demonstrated by simulations and

algorithm (c) Imaging by OMP

0
X(m)

(@)

0
X(m)

(b)

Fig. 10. Imaging results of four metal cylinders based on Milg&metry
(dr- = 8d;) (a) Imaging by the proposed algorithm (b) Imaging by OMP

[Metal cylinder

Absorber

Fig. 11. Photograph of the SAR imaging system

experiments. The results show that MIMO geometry can have
the spatial diversity gain to address the problem of the limited
beamwidth of the antennas and the small scattering surface of
the targets. Besides, although the proposed algorithm would
suffer from the heavy computational complexity for large
scene, some relaxation in computation complexity can increase
the feasibility and the practicability of off-the-grid sparse
imaging for MMW/THz MIMO near-field application.

APPENDIXA

Here, we derive a Fisher information matrix whose elements
make it easy to see the relationship between CRB and the
parameters. From (12), we can write

L
y(@) = 2(q) + w(g) = Y 5™ +w(g)  (29)
=1

wherew(q) is a Gaussian white noise with mean 0 variance
§2. The SNR is defined as follows:

> v (q)

SNR(dB) = 10log1¢ 05 (30)
For simplicity, we can rewrite (29) as
s=z+w (31)

wheres = [sg, s1, ...,sQ,l]T andz = [z, 21, ...,zQ,l]T. If

the probability density function (pdf) ofv is normal, i.e.,
W (0,26%1¢) then the pdf ok is W (z,20%1p). Itis clear that
the mean vectoz depends on the parameter vedfodefined
as

60— [0{,...,0{r (32)

0, =[61,8]" (33)

of MIMO geometry and the matrix pencil (MP). These two
combine in such a way that 2-D imaging of arbitrarily dis- Let §, denote thel-th element of. Then the(l, j)-th
tributed scatterers is achieved by a 1-D continuous paramesgfment of the Fisher information matrikcan be shown as
estimation method. Benefited from the high-resolution tech- 01

nique of MP, the originally limited information of the targets () = 1/6° Z Re {(dzq/d0;)(dz; /d6;)}  (34)

involved in the reduced samples can be enhanced to guarantee e
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whered()/db;, is partial derivative. Butl can be partitioned [9] L. Xiao, T. Chen, G. Han, W. Zhuang, and L. Sun, “Game theoretic
as study on channel-based authentication in mimo systetBEE Trans-
. actions on Vehicular Technologyol. 66, no. 8, pp. 7474-7484, 2017,
J={J;lji=12,..,L} (35) [doi:10.1109/TVT.2017.2652484].

. . . . [10] J. Moll, M. Kotiranta, B. Hils, and V. Krozer, “A 100 GHz mil-
whereJ; ; is a2 x 2 (I, j)-th block matrix ofJ,which can be limeter wave radar system with 32 transmitters and 32 receivers
shown from (29) to be for space applications,” irRadar Conference 2013, pp. 687-690,

[d0i:10.23919/eumc.2012.6459431].
Jii= 1/52B1Re {ClJ}Bj (36) [11] R. Herschel, S. Nowok, P. Warok, R. Zimmermann, S. A. Lang, and
N. Pohl, “MIMO system for fast imaging at 90 GHz,” iNicrowave
In which Conference 2015, [doi:10.1109/eumc.2015.7345793].
B = di {1 ~ } (37) [12] J. Moll, P. Schops, and V. Krozer, “Towards three-dimensional
1= aagd, oy millimeter-wave radar with the bistatic fast-factorized back-projection
algorithm?potential and limitations,JEEE Transactions on Tera-
] (38) hertz Science & Technologyol. 2, no. 4, pp. 432-440, 2012,
[doi:10.1109/TTHZ.2012.2199113)].
[13] G. P. De and L. Deck, “Three-dimensional imaging by sub-nyquist
Q-1 sampling of white-light interferogramsptics Lettersvol. 18, no. 17,
pijo = Z (c1-ct)? (39) pp. 1462—4, 1993, [doi:10.1364/0L.18.001462].
[14] M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,”
Applied & Computational Harmonic Analysisol. 35, no. 1, pp. 111—
Q-1 129, 2013, [d0i:10.1016/j.acha.2012.08.003].
»f)q (40) [15] T. Strohmer and B. Friedlander, “Analysis of sparse MIMO radar,”
J Applied & Computational Harmonic Analysisol. 37, no. 3, pp. 361—
q=0 388, 2014, [doi:10.1016/j.acha.2013.12.005].
[16] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sen-
9 “\q sitivity to basis mismatch in compressed sensindEEE Transac-
Pi,j,2 = q (Cl : Cj) (41) tions on Signal Processingvol. 59, no. 5, pp. 2182-2195, 2011,
q=0 [doi:10.1109/TSP.2011.2112650].
. [17] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
Furthermore, we can write off the grid,” IEEE Transactions on Information Theomol. 59, no. 11,
pp. 7465-7490, 2013, [d0i:10.1109/TIT.2013.2277451].
Z;; = Re{C;;} (42) [18] H. Xie, H. Zhao, and Q. Fu, “Taylor expansion and its appli-
cation in missile-borne sar imaging,” i®ynthetic Aperture Radar,
Then the2 x 2 (1, j)-th block matrix ofJ~! can be shown 2009. Apsar 2009. Asian-Pacific Conference, @310, pp. 426-430,
[d0i:10.1109/APSAR.2009.5374291].
to be _1 2 _1 1 _1 [19] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parame-
‘]i,j =0 Bj AL Bl (43) ters of exponentially damped undamped sinusoids in ndiEEE Trans
. . . Assp vol. 38, no. 5, pp. 814-824, 1990, [d0i:10.1109/29.56027].
Then thel-th diagonal block matrix o™ is [20] T.K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate
the parameters of a sum of complex exponentidBEE Antennas &
Jljll =6-B; - lell B! (44) Propag Mag vol. 37, no. 1, pp. 48-55, 1995, [doi:10.1109/74.370583].

C . — P4i,5,0 *jpi,j,l
,] — .
T piga P2

Then, the two diagonal elements dfll denote the C-R
bounds forg; and j;, respectively.
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