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Off-the-Grid Sparse Imaging by One Dimensional
Sparse MIMO Array
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Abstract—Conventional multiple-input multiple-output (MI-
MO) technique applied into the millimeter-wave (MMW) and
terahertz (THz) imaging applications would suffer from the large
number of array elements due to their short wavelengths. In this
paper, to reduce the array elements for azimuth-range imaging,
a one-dimensional (1-D) sparse MIMO array is introduced,
which combines with the wideband emitted signal to achieve 2-D
imaging in the near field. Provided with these greatly reduced
spatial samples measured by the sparse array, an off-the-grid
sparse imaging algorithm is proposed to recover the arbitrarily
distributed scatterers in 2-D plane. Particularly, the proposed
approach takes advantages of the MIMO geometry and matrix
pencil (MP) method. It utilizes the echo in wave-number domain
which is featured by the MIMO geometry to make a lossless
dimension reduction from the 2-D unknown position of each
scatterer into a local 1-D frequency. After estimating those local
1-D frequencies by MP method, a MIMO-structure-determined
filter is developed to fulfill the inverse mapping and finally
achieve imaging without the pairing problem. Simulations and
experiments verify the effectiveness of the proposed approach.

Index Terms—MIMO, sparse array, MMW, THz, near field.

I. I NTRODUCTION

Synthesized aperture radar (SAR) technology is of interest
in the imaging fields, especially in the security-related appli-
cations by adopting millimeter-wave (MMW) and terahertz
(THz) bands [1]–[4]. Plenty of classical SAR algorithms are
related to fourier transform (FT), e.g., range-doppler algorithm
(RD), range migration algorithm (RMA), which rigorously re-
quire sub-wavelength sampling interval to have a performance
guarantee by Nyquist law [5]. This naturally causes the dense
spatial sampling and will lead to the heavy system cost in
signal acquisition over the MMW and THz bands.

Recently the multiple-input multiple-output (MIMO) tech-
nology, which is realized via simultaneous operation of spa-
tially diverse transmit/receive arrays to speed up the signal ac-
quisition, has attracted great attention in microwave imaging,
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radar detection, mobile and wireless communication and so on
[6]–[9]. Related to MIMO imaging in MMW and THz band,
the reference [10] presented an accurate 3-D reconstruction
by operating 32 transmitters and 32 receivers in the 100 GHz-
MIMO imaging system. The reference [11] proposed a 1×4
MIMO imaging system operating at 90 GHz with 7.5 GHz
bandwidth to obtain the resolution of3.2◦ in azimuth. A 300
GHz MMW radar system that operates at a stand-off distance
of around 7 m is documented in [12] to utilize 8 transmitters
and 16 receivers in a bistatic mode. However, among the
above mentioned MIMO systems, the array-element spacing
in at least one party of the transmitter array and the receiver
array is constrained by the sub-wavelength based on Nyquist
law. Then, the following spatial convolution between the two
arrays would achieve spatially full sampling over the spanned
aperture length [13]. This renders the increased scale of arrays
to obtain large spanned aperture length for high azimuthal
resolution. This situation obviously would be aggravated in
the MMW and THz bands due to their short wavelength.

In this paper, we are addressing the above concerns by
adopting a 1-D MIMO geometry with both the sparse trans-
mitter array and the sparse receiver array. In such a way, even
if a long spanned aperture length is required, the number
of the physical array elements would be greatly reduced.
Nevertheless, it leads to an under-sampling condition for
imaging, which would make the performance loss of FT-based
algorithms. Currently, a popular way to deal with the under-
determined inversion problem is compressed sensing (CS)
[14], [15]. CS-based algorithm tacitly assumes that the scatter-
ers exactly lie on the predefined grids. This obviously violates
the nature of scatterers as they are arbitrarily distributed in
space. The off-the-grid scatterers thus cause the basis mis-
match [16] and make CS-based algorithm less effectiveness
[17]. Therefore, we propose an off-the-grid sparse imaging
algorithm to achieve the imaging of arbitrary scatterers. The
proposed algorithm makes a combination of 1-D MIMO
geometry and the spectra estimation technique in such a way
that 2-D imaging can rely on 1-D parameter estimation. The
unknown 2-D position of each scatterer is firstly one-to-one
mapped into a local 1-D frequency by employing the MIMO
geometry. Those 1-D local frequencies are then estimated
by the matrix-pencil (MP) algorithm, a classical spectrum-
estimation algorithm for 1-D continuous parameter estimate.
After that, a MIMO-structure-determined filter is developed to
fulfill the inverse mapping and finally achieve imaging in the
azimuth-range plane.

Furthermore, the Cramer-Rao bound (CRB) is derived to
analyze the performance of the proposed algorithm. The proof-
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Fig. 1. THz MIMO azimuth-range imaging

of-principle experiments of MIMO geometry are then devised
through a time-division-multiplexing-like method. Both the
simulations and experiments are conducted in the 26.5 GHz
- 40 GHz band. Compared to the FT-based algorithm with
different scale of measurements obtained both by MIMO
geometry and by monostatic SAR, the results demonstrate the
effectiveness and validity of the proposed imaging method.

II. SIGNAL MODEL

The geometry of near-field MIMO imaging system in
azimuth-range plane is shown in Fig.1. Without loss of gener-
ality, here we adopt the 1-D uniform transmitter- and receiver-
array to simplify the analysis. There are M transmitters with
the array interval ofdt, and N receivers with the array interval
of dr. Thus them-th transmitter and and then-th receiver
is located at(xtm, R0) and (xrn, R0), respectively, where
xtm = (m−1)dt−Mdt/2 andxrn = (n−1)dr−Ndr/2, R0

denotes the distance between the baseline of the array and the
center of the scene. Conventionally, at least one party ofdt
anddr is constrained to the sub-wavelength by Nyquist law,
and this leads to the finally full sampling in the azimuth. It is
obvious to have that the corresponding system cost will scale
up in the MMW and THz band. Therefore, here we consider
the 1-D sparse MIMO array, where bothdt anddr need not
meet the sub-wavelength requirement.

All the transmitted signals are orthogonal to each other. The
m-th emitted signal issm(t) = um(t)ej2πfct with complex
envelopeum(t) and carrier frequencyfc, m = 1, ...,M .
Therefore, assuming that there areL scatterers in the interested
scene, the echo at then-th receiver is

yn(t) =

M
∑

m=1

L
∑

l=1

σ(rl)sm(t− τn,m(l)) (1)

wheren = 1, ..., N , σ(rl) is the complex reflection coefficient
of the l-th scatterer whose position is denoted asrl = (xl, yl),
l = 1, ..., L, and τn,m(l) is the path delay from them-th

transmitter to thel-th scatterer and then to then-th receiver.
That is,τn,m(l) is of the form as

τn,m(l)

=

√

(xtm − xl)2 + (R0 − yl)2 +
√

(xrn − xl)2 + (R0 − yl)2

c
(2)

wherec is the light velocity.
After the down-conversion by multiplying the signal of

e−j2πfct, the orthogonal matched filter between the baseband
signal atn-th receiver and them-th transmitted signal yields

yn,m(t) =

L
∑

l=1

σ(rl)e
−j2πfcτn,m(l)um(t− τn,m(l))⊗ u∗

m(t)

(3)
Taking the Fourier transform (FT) of (3), we have

Ym,n(f) = F {ym,n(t)} = Um(f)

L
∑

l=1

σ(rl)e
−j2π(fc+f)τm,n(l)

(4)
whereF {um(t)⊗ u∗

m(t)} is the power spectral of them-th
waveform withf ∈ [0, B], andB denotes the bandwidth of
each transmitted signal. SinceUm(f) is known, an alterna-
tively concise form of (4), denoted aszn,m(f), is

zn,m(f) =
Ym,n(f)

Um(f)
=

L
∑

l=1

σ(rl)e
−j2π(fc+f)τm,n(l) (5)

Due to the short range between the array and the targets, the
exponential term in (5) denotes the spherical wave. The term
τn,m(l) in (5) can be approximated through Taylor expansion
[18], i.e.,

τm,n(l) ≈
1

c

(

√

x2
tm +R2

0

)

+

(

√

x2
rn +R2

0

)

−
1

c
(Itm+Irn)rl

(6)
whereItm = (sin θtm, cos θtm), Irn = (sin θrn, cos θrn), θtm
and θrn are the azimuth angles of them-th transmitter and
then-th receiver, respectively, as Fig.1 shows. Since the term
1
c

(

√

x2
tm +R2

0

)

+
(

√

x2
rn +R2

0

)

in (6) is a known quantity
independent of targets, it can be easily compensated and will
be omitted in the following discussion for simplicity.

By letting Kn,m(f) be fc+f
c

(Itm + Irn), the signal in (5)
then can be further expressed as

zn,m(f) =

L
∑

l=1

σ(rl)e
j2πKn,m(f)rl

=
L
∑

l=1

σ(rl)e
j2π(Kx

n,m(f)xl+K
y
n,m(f)yl)

(7)

where Kn,m(f) = (Kx
n,m(f),Ky

n,m(f)) denotes a sam-
pling in the wave-number domain. In specific,Kx

n,m(f) and
Ky

n,m(f) are of the forms as

Kx
n,m(f) =

fc + f

c
(sin θtm + sin θrn)

Ky
n,m(f) =

fc + f

c
(cos θtm + cos θrn)

(8)
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From (7) we can see that the wave-number-domain echo
zn,m(f) and the reflectivity of the scattererσ(rl) satisfy the
FT relationship. This indicates that a 2-D reflectivity can be
obtained by an 2-D inverse FT if the echoes are collected
subject to Nyquist law. Obviously in the current case of
1-D sparse MIMO array, this condition is not guaranteed.
Besides, CS-based reconstruction suffers from the well-known
basis mismatch problem and is hard to reconstruct arbitrarily
distributed scatterers. Therefore, to address these problems, an
off-the-grid sparse imaging by employing the MIMO geometry
and the spectrum-estimation-based high-resolution technique
is proposed.

III. O FF-THE-GRID SPARSE IMAGING ALGORITHM

Assuming that the(n,m)-th channel (i.e., the path from the
m-th transmitter to the target and then to then-th receiver)
hasQ samples in frequency domain, itsq-th sample is

zn,m (q) =
L
∑

l=1

σ(rl)e
j2π(Kx

n,m(q)xl+K
y
n,m(q)yl) (9)

whereq = 0, ..., Q− 1 and the discrete form of (8) is

Kx
n,m(q) =

fc +
B
Q
q

c
(sinθtm + sinθrn)

Ky
n,m(q) =

fc +
B
Q
q

c
(cosθtm + cosθrn)

(10)

Recalling the composition of azimuth and frequency sam-
pling in the wave-number domain as (10) shows, we can
replace the 2-D position of thel-th scatterer(xl, yl) to a 1-D
local frequency, denoted asβn,m(rl), i.e.,

βn,m(rl) =
B

cQ
q(Itm + Irn) · rl (11)

Thus, (9) can be rewritten into a more compact 1-D form
as

zn,m(q) =

L
∑

l=1

σ̃(rl)e
j2πqβn,m(rl) (12)

whereσ̃(rl) = σ(rl)e
j2π fc

c
(Itm+Irn)

T
·rl .

A. Algorithm

Based on (12), to address the problem of the high-resolution
imaging without grid dependence in the under-sampling condi-
tion, we take into account the spectrum-estimation technique,
e.g., the matrix pencil (MP) algorithm, to estimateβn,m(rl).
The detailed off-the-grid sparse algorithm is depicted as fol-
lows, by combing the MP algorithm (i.e., step1-step2) and the
MIMO geometry (i.e., step3-step4).

• Step 1:Hankel Matrix Construction

With respect to each transmitter-receiver channel, the echo
can be collected as

zn,m =
[

zn,m(0) · · · zn,m(Q− 1)
]T

(13)

Then, the corresponding Hankel matrix ofzn,m can be
stacked as follows, denoted asZn,m

Zn,m =







zn,m(0) zn,m(1) zn,m(Q− I)
. . .

zn,m(I − 1) zn,m(I) zn,m(Q− 1)






(14)

whereI is the pencil parameter denoting the window length,
each column ofZn,m is a windowed segment of the matrix
sequence{zn,m(0), zn,m(1), · · · , zn,m(Q − 1)}.

• Step 2:Local Frequencies Estimation
The Hankel matrixZn,m can be decomposed as follows

Zn,m = Un,m
s Σn,m

s Vn,m
s (15)

whereUn,m
s andVn,m

s are the unitary matrices consisting of
the eigenvectors ofZn,mZH

n,m and ZH
n,mZn,m, respectively,

andΣn,m
s is the diagonal matrix containing the singular values

of Zn,m. The superscript(·)H denotes the conjugate transpose
operator.

Let Un,m
s,1 andUn,m

s,2 be

U
n,m
s,1 = Un,m

s (1 : Q− I, :) (16)

U
n,m
s,2 = Un,m

s (2 : end, :) (17)

According to the theory of MP, the 1-D local fre-
quencies, i.e., {βn,m(rl); l = 1, 2, · · · , L} are the gen-
eralized eigenvalues ofUn,m

s,2 − λUn,m
s,1 , denoted as

{

β̂n,m(rl); l = 1, 2, · · · , L
}

.

• Step 3:Scatterer Position Recovery
(11) builds the relationship between the 2-D position of the

scatterersrl and its 1-D frequencyβn,m(l). Therefore, we
define aMN × 2 MIMO-structure filter, denoted asW, and
its (n,m)-th row takes the form as

[

W(n,m),1,W(n,m),2

]

=
B

cQ
[sinθtm + sinθrn, cosθtm + cosθrn]

(18)

Then, stacking all thêβn,m(rl) as

β̂ =







β̂1,1(r1) · · · β̂1,1(rL)
. . .

β̂N,M(r1) · · · β̂N,M (rL)






(19)

The 2-D positions of scatterersg = [r1, · · · , rL]
T can be

recovered via
g = (WHW)−1WH β̂ (20)

• Step 4:Complex coefficients recovery
The signal in (12) can be rewritten as

zn,m (q) = DH
n,m(q)Hn,mσ (21)

where

Dn,m(q) =
[

e−j2πqβn,m(r1), · · · , e−j2πqβn,m(rL)
]T

Hn,m = diag
(

ej2π
fc
c
(Itm+Irn)T r1 , · · · , ej2π

fc
c
(Itm+Irn)T rL

)

σ = [σ (r1) , · · · , σ (rL)]
T
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Then,zn,m in (13) can be further expressed as

zn,m = DH
n,mHn,mσ (22)

where

zn,m = [zn,m (0) , · · · , zn,m (Q − 1)]T

Dn,m = [Dn,m (0) · · ·Dn,m (Q− 1)]

Obviously, (22) shows that the complex coefficients ofσ

can be estimated through solving those linear equations over
all channels, i.e.,

σ̂ =
1

N ×M

∑

H−1
n,m(Dn,mDH

n,m)−1Dn,mzn,m (23)

where the mean operation is taken over all channels to improve
the estimation accuracy.

B. Performance discussion

It can be observed from step 1-step 4 that the estimation
performance of the proposed algorithm for arbitrarily dis-
tributed scatterers is determined by their local frequencies
estimation, i.e.,{βn,m(rl)}. Therefore, a brief discussion
about the estimation variance ofβn,m(rl) in terms of CRB
is provided in Appendix A (see [19] for more information).

Then, we can also see from step 1-step 4 that the computa-
tion complexity of the proposed algorithm is focused on step 2,
related to the matrix decomposition involved in MP method.
Based on [19], the computation complexity of the proposed
algorithm can be estimated about

I2(Q− I + 1) +
17

3
I3 (24)

The computational complexity of 2-D FT [20], in comparison,
is about

1

2
(log2Q)Q (25)

The ratio of the computational complexity of the proposed
algorithm over that of the 2D-FT based method is

I2(Q − I + 1) + 17
3 I3

1
2 (log2Q)Q

(26)

which would be examined numerically as a function of pa-
rameter I and Q in the Simulation section.

IV. SIMULATION

The theoretical resolution in the azimuth dimension (along
the x-axis) and in the range dimension (along they-axis) are
respectively given as

ρx =
cR

fMNdr
, ρy =

c

2B
(27)

The parameters of the considered MIMO geometry are set
as Table I shows.

TABLE I
THE PARAMETERS OF THE CONSIDEREDMIMO RADAR

Parameter Variable Value

The length of the array in the x-direction Lx 0.51m

The distance between the Antenna array

baseline and the imaging scene R0 0.5m

Center frequency of the transmitted signal f 35GHz

Wavelength λ 1.64mm

Spatial spacing by Nyquist law d∗ 0.43cm

Bandwidth B 13.5GHz

The sampling number in frequency domain Q 80

Theoretical azimuth resolution by Nyquist law ρx 0.78cm

Theoretical range resolution by Nyquist law ρy 1.11cm

A. Simulations

Here, we compare the proposed algorithm with the tradition-
al FT algorithm and OMP algorithm (a classical algorithm in
the CS field).

The estimation error, denoted asE, is calculated as

E =

L
∑

l=1

1

L
‖r̂l − rl‖2 (28)

where r̂l = (x̂l, ŷl) and rl = (xl, yl) denote the estimated
and the real position of thel-th scatterer, respectively. It is
worth noting that to avoid the influence of the mainlobe in
FT algorithm, its estimation error is calculated by taking its
L peaks.

Firstly, the imaging by 2-D FT-based algorithm under the
full data set and under-sampling is tested, respectively, to
investigate the influence of sampling on FT performance. In
the case of full data set, the receiver spacing is set asdr = d∗ ,
and the transmitter spacing is set asdt = Nd∗, whered∗ = λ

2
denotes the sub-wavelength sampling interval by Nyquist law.
In such a way, we can have 4 transmitters and 30 receivers, i.e.,
M = 4 N = 30. In the case of under-sampling, the receiver
spacing and the transmitter spacing is set asdr = 8d∗ and
dt = Ndr = 64d∗, respectively, and such thatM = 4, N = 8.
This means that there is under-sampling for a factor of 8. By
arbitrarily choosing 6 scatterers in the azimuth-range plane, as
shown in Fig.2, the comparison between (a) and (b) represents
the failure by FT algorithm in the case of under sampling,
and spatial under-sampling makes the ambiguity of imaging
in azimuth. Hence, the error in Fig.2.(b) is referred to infinity,
denoted as Inf.

Then, under the under-sampling condition, the imaging
comparison is taken between OMP and the proposed algo-
rithm. For the same scatterers as that in Fig.2, the imaging
results of two algorithms are shown in Fig.3 (a) and (b),
respectively. Obviously, it demonstrates that our proposed
approach can provide a better imaging than OMP, while the
performance of OMP severely depends on the match between
the meshgrids and the scatterers positions. Moreover, the
comparison between Fig.2 (a) and Fig.3 (b) shows that the
proposed algorithm can outperform FT algorithm with the full
data set.
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Fig. 2. Image by the FT algorithm: (a) Full data set withdr = d∗r ,
E=0.057mm). (b) Under-sampling withdr = 8d∗
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Fig. 3. Under-sampling imaging withdr = 8d∗r : (a) OMP, E=0.09 m, (b)
Proposed algorithm, E=0.04 m.

Next, the imaging performance of the proposed algorithm
is tested in terms of estimation errorE, as shown in Fig.4,
where the result by FT with full sampling is taken as a
comparison. Fig.4. (a) and (b) illustrate the performance versus
the x-dimensional and y-dimensional distance between two
scatterers, respectively, and show that the proposed algorithm
can attain the theoretical resolution in both dimensions with
greatly reduced measurements.

Provided with the CRB in appendix A, here we take one
scatterer as an example to test the estimation performance of
the algorithm in comparison with its theoretical limit. The
parameters are set asQ = 80, (x1, y1) = (0.1, 0), β1 =
0.015, σ̃1 = 1. Fig.5 shows the estimation variance ofβ1 with
respect to the varying signal-to-noise (SNR). The definition of
SNR is given in appendix A. It is clear from Fig.5 that the
estimation accuracy would be improved with the increase of
SNR. The different curves with respect to different value of
I indicates that the parameter I works as a tuning parameter
which can be adjusted to increase the estimation accuracy.
When I = 31, i.e., approximately one third of Q, the
estimation variance can come close to its CRB, and this is
consistent with the analysis in [19] and [20].

In Fig.6, the computation complexity of the proposed al-
gorithm is examined with varyingI and Q. The ratio in
(30) is compared with a certain threshold, where the result
corresponding to the ratio less than the threshold is set as 1,
otherwise is set as 0. It is obvious to observe from Fig.6 that
the proposed algorithm has a higher computation complexity
than its counterpart FT-based algorithm. This result is quite
reasonable and well-known due to the matrix-decomposition
property of spectrum-estimation technique. However, from
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Fig.6.(a), (b) and (c), where the threshold is set as 10, 50, and
100, respectively, it can be seen that asQ (i.e., the number
of samples) increases, the range ofI will be expanded for
acceptable complexity of the proposed algorithm. In other
words, the more the number of samples is, the greater the
range of I can be. Due to the relative smallI compared
with the size of dataQ, it should be noted that the proposed
algorithm is suitable for the scene with small size of data set.
However, it is worth noting that to reduce the size of data set
is the original intension of the presented article, and thus our
proposed algorithm is efficient and of practical application to
some extent. Besides, Fig.6 (d) shows that if the requirement
on computational complexity can be somehow relaxed, the
range of I would increase. This means that the detection
performance of the proposed algorithm can be improved.

B. Experimental Results

Assuming that the under-the-test targets are static, the
multiple input and multiple output of MIMO geometry is
simulated by a single input and a single output through a time-
division-multiplexing-like method, as shown in Fig.7. That is,
two channels of the VNA are taken as the input, denoted as
TX and the output, denoted as RX of MIMO, respectively. The
multiple inputs and multiple outputs are collected at different
time and different spatial positions by moving TX and RX
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Fig. 6. Computational complexity:(a) the ratio threshold is10. (b) the ratio
threshold is 50. (c) the ratio threshold is 100. (d) the boundaries with respect
to four different ratio thresholds.

along the linear trail. The 3 dB beamwidth of the antennas
is 30◦. The distance between the linear trail and the center
of scene is 0.25 m (i.e.,R0), and other parameters are set the
same as that in Table 1.

Firstly, the imaging results are checked by the proposed
algorithm and FT under the full data set, shown in Fig.8.
The targets are two metal cylinders, as Fig.8 (a) shows. It
is found from (b) and (c) that, the proposed algorithm has
better imaging performance, while the FT algorithm would
expand the reconstructed scatterer due to the mainlobe of point
spread function (PSF). As shown in (d), the shape of PSF is
unpleasing partially because of the limited beamwidth of the
adopted antennas.

The comparison between OMP and the proposed method is
conducted under the condition of the full data set and partial
data set, respectively. The targets are multiple metals cylinders,
shown in Fig.9 (a). It is found from (b) and (c) that our
proposed approach outperforms OMP under full data set. Then
for the case of under-sampling, as shown in Fig.10, we can see
that OMP is hard to achieve the imaging due to the mismatch
problem of the uniform meshgrids and the arbitrary positions
of the scatterers, but the proposed algorithm can maintain a
good imaging performance.

Then, for the same scene of interest, the imaging of FT
based on monostatic SAR and on MIMO are compared to
discuss the influence of geometry difference on imaging per-
formance. The experiment of near-field SAR imaging system
is shown in Fig.11. The synthesized aperture length is as the
same as that in MIMO. The imaging result by SAR and
by MIMO is shown in Fig.12 (a) and (b), respectively. It
is obvious to have that the imaging performance by MIMO
geometry is much better than that by monostatic SAR. There
are some aspects to affect the performance of monostatic SAR
in our experiment. The limited beamwidth of antenna is one

Fig. 7. Photograph of the MIMO imaging system

Fig. 8. Imaging results of two metal cylinders in MIMO (dr = d∗r ) (a)
Photograph of two metal cylinders and the distance is 2.5 cm in the x direction
and 5 cm in the y direction (b) Image by the proposed algorithm. (c) 2-D
image by FT (d) 3-D image by FT

negative factor, and it constraints the efficient field of view of
SAR. Another possible factor is that the effective scattering
area of the metal cylinder is too small to make an effectively
receiving by monostatic SAR. However, MIMO geometry due
to the multiple illumination and the multiple receiving can
have the spatial diversity gain to bring back more information
of the scatterers, and can maintain a good imaging in the face
of limited beamwidths and the small scattering area of targets.

V. CONCLUSION

An off-the-grid-sparse imaging algorithm based on 1-D
MIMO sparse array has been proposed for MMW and THz
near-field imaging. The sparse MIMO geometry adopts the
sparse arrays both in transmitting and receiving to make
a decrease in physical array elements, while the imaging
performance is then maintained by the proposed off-the-grid
sparse imaging algorithm. The proposed algorithm makes use
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Fig. 9. Imaging results of four metal cylinders based on MIMO geometry
(dr = d∗

r
(a) Photograph of four metal cylinders and the distance is 5 cm

in the x direction and 10 cm in the y direction (b) Imaging by the proposed
algorithm (c) Imaging by OMP
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Fig. 10. Imaging results of four metal cylinders based on MIMOgeometry
(dr = 8d∗

r
) (a) Imaging by the proposed algorithm (b) Imaging by OMP

Fig. 11. Photograph of the SAR imaging system

of MIMO geometry and the matrix pencil (MP). These two
combine in such a way that 2-D imaging of arbitrarily dis-
tributed scatterers is achieved by a 1-D continuous parameter
estimation method. Benefited from the high-resolution tech-
nique of MP, the originally limited information of the targets
involved in the reduced samples can be enhanced to guarantee
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Fig. 12. Imaging results of four metal columnsin different imaging system
(dr = d∗

r
) (a) Imaging by FT based on MIMO geometry. (b) Imaging by FT

based on monostatic SAR

the estimation performance. Then, the inverse mapping from
1-D parameter to 2-D position is based on the solution
of a series of linear equations and thus avoids the pairing
problem. The validity of the sparse MIMO geometry and the
proposed algorithm has been demonstrated by simulations and
experiments. The results show that MIMO geometry can have
the spatial diversity gain to address the problem of the limited
beamwidth of the antennas and the small scattering surface of
the targets. Besides, although the proposed algorithm would
suffer from the heavy computational complexity for large
scene, some relaxation in computation complexity can increase
the feasibility and the practicability of off-the-grid sparse
imaging for MMW/THz MIMO near-field application.

APPENDIX A

Here, we derive a Fisher information matrix whose elements
make it easy to see the relationship between CRB and the
parameters. From (12), we can write

y(q) = z(q) + w(q) =

L
∑

l=1

σ̃le
j2πqβl + w(q) (29)

wherew(q) is a Gaussian white noise with mean 0 variance
δ2. The SNR is defined as follows:

SNR(dB) = 10log10

∑Q−1
q=0 y2(q)

Qδ2
(30)

For simplicity, we can rewrite (29) as

s = z + w (31)

wheres = [s0, s1, ..., sQ−1]
T and z = [z0, z1, ..., zQ−1]

T . If
the probability density function (pdf) ofw is normal, i.e.,
W (0, 2δ2IQ) then the pdf ofs is W (z, 2δ2IQ). It is clear that
the mean vectorz depends on the parameter vectorθ defined
as

θ =
[

θT
1 , ..., θ

T
L

]T

(32)

θl = [σ̃l, βl]
T (33)

Let θl denote thel-th element ofθ. Then the (l, j)-th
element of the Fisher information matrixJ can be shown as

(J)l,j = 1/δ2
Q−1
∑

q=1

Re
{

(dzq/dθl)(dz
∗

q /dθj)
}

(34)
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whered()/dθl, is partial derivative. ButJ can be partitioned
as

J = {Jl,j ; l, j = 1, 2, ..., L} (35)

whereJl,j is a 2× 2 (l, j)-th block matrix ofJ,which can be
shown from (29) to be

Jl,j = 1/δ2BlRe {Cl,j}Bj (36)

In which
Bl = diag {1, σ̃l} (37)

Ci,j =

[

ρi,j,0 −jρi,j,1
jρi,j,1 ρi,j,2

]

(38)

ρi,j,0 =

Q−1
∑

q=0

(cl · c
∗

j )
q (39)

ρi,j,1 =

Q−1
∑

q=0

q(cl · c
∗

j )
q (40)

ρi,j,2 =

Q−1
∑

q=0

q2(cl · c
∗

j )
q (41)

Furthermore, we can write

Zl,j = Re {Cl,j} (42)

Then the2× 2 (l, j)-th block matrix ofJ−1 can be shown
to be

J−1
i,j = δ2 ·B−1

j · Z−1
l,j ·B−1

l (43)

Then thel-th diagonal block matrix ofJ−1 is

J−1
l,l = δ2 ·B−1

l · Z−1
l,l ·B−1

l (44)

Then, the two diagonal elements ofJ−1
l,l denote the C-R

bounds forσ̃l andβl, respectively.
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