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Abstract⎯The influence of air gaps on the response 

of transmission for a transverse-electric mode 
parallel-plate waveguide (TE-PPWG) with a single 
cavity and double cavities has been studied 
experimentally. As the air gap is larger than the 
resonant wavelength of high order cavity mode in the 
single deep grooved waveguide, only the fundamental 
cavity mode can be excited and single resonance can be 
observed in the transmission spectrum. Based on above 
observations, a tunable multiband terahertz (THz) 
notch filter has been proposed and the variation of air 
gap has turned out to be an effective method to select 
the band number. Experimental data and simulated 
results verify this band number tunability. This 
mechanical control mechanism for electromagnetic 
induced transparency (EIT) will open a door to design 
the tunable THz devices. 

  
Index Terms⎯Electromagnetic induced transparency, 

metal parallel plate waveguide, terahertz filter. 
  

1. Introduction 
The parallel-plate waveguide (PPWG) is a simple 

structure in the THz range which is well understood in 
classical waveguide theory and is widely employed due to 
its low loss and low dispersion characteristics[1]. Owing to 
the fact that waveguides have the ability to confine 

                                                        
Manuscript received June 5, 2015; revised June 17, 2015. This work 

was supported by the National Program on Key Basic Research Project of 
China under Grant No. 2014CB339806, Basic Research Key Project under 
Grant No. 12JC1407100, Major National Development Project of 
Scientific Instrument and Equipment under Grant No. 2011YQ150021 and 
No. 2012YQ14000504, and the National Natural Science Foundation of 
China under Grant No. 11174207, No. 61138001, No. 61205094, and No. 
61307126. 

Y.-M. Zhu and Y. Peng are with the Shanghai Key Lab of Modern 
Optical System, Engineering Research Center of Optical Instrument and 
System, Ministry of Education, University of Shanghai for Science and 
Technology, Shanghai 200093, China (Corresponding authors 
e-mail:ymzhu@usst.edu.cn; py@usst.edu.cn) 

L. Chen and D.-N. Wang are with the Shanghai Key Lab of Modern 
Optical System, Engineering Research Center of Optical Instrument and 
System, Ministry of Education, University of Shanghai for Science and 
Technology, Shanghai 200093, China (e-mail: linchen@usst.edu.cn; 
danniwang07@163.com) 

Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.007 
 

radiation, they can be employed in conjunction with 
resonant structures, resulting in unique spectral resonant 
features, which opens up PPWG to a myriad of sensing and 
filtering applications. There have been several designs that 
employed resonant structures embedded within PPWGs 
such as Bragg gratings, photonic band gap, and resonant 
groove(s) structures[2]–[10]. Recently, a single rectangular 
cavity incorporated into a transverse-electric mode PPWG 
(TE-PPWG) has been demonstrated as a notch filter with a 
very narrow line width[11]. The PPWG with a single cavity 
has also been found to be a strong and high Q resonant 
system in which the electromagnetic induced transparency 
(EIT) phenomenon will appear. Astley et al. has 
characterized the single cavity waveguide resonant 
structure and also analyzed the origin of the resonant 
behavior and its dependence on geometric factors[12]. As the 
groove grows deeper (i.e. depth increases), this dip shifts to 
lower frequencies. However, there are still some key 
aspects of the single grooved TE-PPWG performance that 
has not been sufficiently studied. It should be noted that the 
grooved PPWG structures are analogous to plasmonic stub 
metal-insulator-metal (MIM) structures in the visible 
region[13]–[16]. The stub structure also plays an important 
role in filtering proposals but lacks the experimental 
support. Then we reported an observation of an EIT-like 
phenomenon in THz PPWG double cavities systems and 
analyzed the relation between the off-position of the 
cavities and the transmission properties. We also found that 
two detuned resonances could be varied by choosing 
different shifting length between double cavities. This 
means that the phase shift of the propagating wave between 
two resonances may be another important factor for the 
realization of EIT. The proposed system has the following 
features: First, since the most popular metals are seen as 
perfect conductors due to their extremely large conductivity 
in the THz region, the realization of THz EIT-like response 
in PPWG-cavities systems is not plasmonically induced. 
Second, the double cavities have identical geometry, 
therefore, the detuning of resonant frequencies does not 
arise from the different geometrical parameters of two 
cavities. We also found the EIT-like transmission presented 
here resulted from the resonances hybridization induced by 
the change of coupling strength of the top and bottom 
cavities[17]. 
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experimental results agree well with the numerical results 
in Fig. 8 and the deviation is probably caused by the 
fabrication imperfections of the sample, which introduce 
further asymmetry and rearrangement of some resonant 
frequencies. For a complete picture of resonant frequencies 
change, several calculations were performed with the 
variation of the shifting length from 0 μm to 450 μm. The 
detuning |ω1−ω2| (ω1 and ω2 are low and high resonant 
frequencies, respectively) decreases and the transparency 
window narrows down with the increase of the shifting 
length L.  

 
Fig. 8. Fourier-transformed intensity of the THz wave forms with 
different L (solid line: simulated, dash line & dots: experimental): 
(a) L=0 μm, (b) L=100 μm, (c) L=200 μm, and (d) L=300 μm. 

This EIT-like transmission can also be explained by 
analogy to the coupling of bright modes and dark modes. 
When the bottom cavity is set symmetrically to the top one, 
only one resonant dip, which corresponds to the two bright 
modes (each of them has the same resonant frequency), can 
be excited in both cavities simultaneously. In this condition, 
the dark modes cannot be excited. When the bottom cavity 
is shifted backward from the symmetric position, due to the 
identical geometry of the two cavities, the incident wave 
first arrives at the top cavity and couples with it. The 
shifted bottom cavity can hardly be interacted directly with 
the incident wave any more but can couple with the top 
cavity. In other words, the top cavity acts as the “radiative” 
resonator (a bright mode) that is coupled to a “bus” 
waveguide; the bottom cavity acts as the “sub-radiant” 
resonator (a quasi-dark mode, induced by the shifting 
length of two cavities) that cannot be coupled to the “bus” 
waveguide. This physical picture is similar to the unit cell 
(consists of an upper gold strip as a bright mode, a pair of 
lower gold strips as a dark mode, and a dielectric spacer) 
Then this EIT-like transmission can also be seen as the 
coupling between bright modes and quasi-dark modes when 
the symmetry is broken. 

Besides, the influence of the length of the top and 
bottom plates d was also investigated[20]. Four different 

waveguide spacings with d=610 μm, 670 μm, 740 μm, and 
780 μm, were used to study the characteristics of the EIT. 
Fig. 9 shows the experimental (dots) and simulation (black 
lines) power transmissions by comparing the spectra of the 
propagated pulses with and without the cavities. The metal 
is set as a perfect electrical conductor in the simulation due 
to the disregard for the attenuation loss of the metal in the 
THz range. At least three more observations may be 
inferred by looking at Fig. 9: i) Fig. 9 exhibits a complete 
loss of spectral power up to the cutoff frequencies of 0.244 

THz, 0.236 THz, 0.202 THz, and 0.192 THz, corresponding 
to d=610 μm, 670 μm, 740 μm, and 780 μm, respectively. ii) 
The transmission shows strong EIT effect, when d is 
increased from 610 μm to 780 μm, the low asymmetric 
resonances shows red-shift. The asymmetric resonant 
frequencies for d=610 μm, 670 μm, 740 μm, and 780 μm are 
0.395 THz, 0.379 THz, 0.354 THz, and 0.338 THz, 
respectively. This red-shift of high symmetric resonances 
can also be found for d=610 μm and 670 μm, where the 
resonant frequencies are 0.456 THz and 0.446 THz, 
respectively. iii) As d is increased to 740 μm, the main 
symmetric resonances is degenerated in Fig.9 (c). This 
effect can also be found when d is equal to 780 μm. The 
measured and simulated results show good agreements. The 
deviation of experimental and numerical results is probably 
caused by the imperfections in the fabrication in real 
structures, which introduces further rearrangement of 
resonant frequencies. 

 
Fig. 9. Measured THz spectra with various air gaps (solid line: 
simulated, dots: experimental): (a) d=610 μm, (b) d=670 μm, (c) 
d=740 μm, and (d) d=780 μm. 

Firstly, as mentioned above in the experiment, when the 
waveguide spacing d decreases (1/d increases), the resonant 
frequencies of both symmetric and asymmetric resonances 
show red-shift. This red-shift effect is similar to the result 
of the PPWG with a single cavity for both TE[12] and TM[10] 

polarizations. The resonant frequency can be expressed 
as[10] 



CH

w
T
of
th
di
(s
th
si
tw
on
re
F
ca

th
in

be

ca
el
tr

th
hi
th
th

Fi

of
sh
re
li
(i
sy
w

HEN et al.: Reso

where c is the
THz/mm–1) and

f heff for the a
he symmetric
ifference betw
shown in Figs
he red-shift of
imulation. Th
wo cavities is
nly differenc
esonance is su
P resonance
avities. 

According 
he dispersion 
n Fig. 10. 

1) Region 
e excited is 0.

2) Region I
an be excite
lectric mode
ransmission di

3) Region I
han 1. The l
igher transver
he residual eff
he claw type s

ig. 10. Observa

So far, we 
f EIT in a PP
hifting length 
esonant wave
ne), EIT can 
including the 
ymmetric FP 

wave propagat

onances Character

( )
2

v d ∝
×

e light veloci
d heff is the ef

asymmetric re
c resonances
ween two reso
s. 4 (b) and (d
f EIT peaks ob
e mechanism 
 identical to t
ce is that 
upported by P
s are suppo

to the relation
diagram can b

I: d<λ/2, the 
. No stable mo
II: λ/2<d<λ, th
d is 1. Only

e TE is ex
ip in the regio
III: d>λ, the m
lowest order 
rse electric mo
ffect of the tra
structure in reg

ation range of P

can describe 
PWG cavities
 L (200 μm), 

elengths are l
be found obv
transparent p
resonant wav
tes along a “z

ristics of Parallel 

( )eff2
c

h d+
  

ity in vacuum
ffective cavity
sonances is no
s due to th
onances at res
d) of [17]). Th
bserved in bo
of red-shift b
that of the sin
the single 

PPWG with o
orted by asy

nship between
be divided int

maximum mo
ode exists. 
he maximum 
y the lowest
xcited, we c
on II. 
maximum mo
transverse e

ode can be ex
ansmission dip
gion III. 

PWG. 

the mechanism
s system. By 

as d increase
larger than d
viously and th
peak) show re
elength is les
zigzag line” a

Plate Waveguide

           

m (3×108 m/s
y height. The v
ot equal to tha
he electric 
sonant frequen
his process ca

oth experiment
by the PPWG 
ngle cavity[12]

Fabbri-Palo
ne cavity and
ymmetric PP

n the size d a
to three region

ode order that

mode order w
t order transv
can observe 

ode order is l
electric mode 
xcited. Conside
p, we can obs

m of manipul
fixing approp

es and the tw
d (below the 
he two resona
ed-shift. Once
s than d, the T

and acts as gu

e Cavities 

 (1) 

s=0.3 

value 
at for 
field 
ncies 
auses 
t and 
with 

], the 
(FP) 

d two 
PWG 

and λ, 
ns as 

t can 

which 
verse 

the 

arger 
and 

ering 
serve 

ation 
priate 

wo FP 
light 

ances 
e the 
TEM 
uided 

wav
tran
regio
the 
tran
dest
reso
take
peak
mec
of E

is p
PPW
resp
flexi
filte
adju
tuna
deep
in T
reso
It m
wav
com
sens
abso

T
Prog
Subj
Foun
Disc
JL15
the M

[1]

[2]

[3]

[4]

ve. The cav
smission (that
on above the 
FP resonance
sparent peak 
tructive inter
onances[17], as 
e place, this in
k modulation
chanism of ab
EIT in meta-m

In conclusion
presented exp
WG with a s
pectively. The 
ibly modify th
r. The air ga

ust the band n
able by mecha
p cavity PPWG
THz communi
onances is ach
may inspire int
veguide based
mpact THz de
sitive sensor
orbers. 

This work wa
gram under Gra
ect Chief Scien

ndation of Chi
cipline of Instru
50505, and the 
Ministry of Edu

R. Mendis an
propagation 
Letter, vol. 26
J. M. Nagel
parallel-plate 
systems,” Sem
no. 7, pp. S28
C.-Y. Lin, M
“Rotation,
watermarking
Processing, v
J. Kitagawa, M
and Y. Kadoy
metallic pho

vities produc
t is, the FP re
light line). He
es into the g
between two
ference of s
the transition

nterference is 
can be com

ove manipula
aterial and pla

4. Con
n, a tunable mu
perimentally 
single deep 
adjustable air

he filtering ch
ap can also b
number. Becau
anical control 
G structure ha
ications. An 

hieved by mec
terest in deve

d EIT, resultin
evices, such 
rs, and el

Acknowle
as supported 
ant No. 14QA
ntist under Gra
ina under Gran

ument Science a
New Century 

ucation under G

Refere
nd D. Grischkow

of subpicosec
6, no. 11, pp. 84
l, P. H. Boli
THz compone

miconductor Sc
81–S285, 2005. 
. Wu, J. A. Bl
scale, and 

g for images
ol. 10, no. 5, pp
M. Kodama, S.
ya, “THz wave 
otonic crystal 

e little infl
esonances can
ere the increas
guided wave. 
 resonances c
symmetric an

n of symmetric
broken and a

mpleted in thi
ation is differe
asmonics[27]–[3

nclusions 
ultiband terah
and numeric
cavity and d
r gap has been
haracteristics o
be varied in t
use the air ga
or electrical a

as great potent
on-to-off con

chanically tuni
eloping mecha
ng in a wide 
as slow ligh

lectromagneti

edgment 
by the Shan

1403100, Prog
ant No. 14XD1
nt No. C1400

and Technology
Excellent Tale

Grant No. NCET

ences 
wsky, “Undisto
cond terahertz 
46–848, 2001. 
ivar, and H. 
ents for cost-eff
cience and Tec

loom, I. J. Cox
translation 

s,” IEEE Tra
p. 767–782, 200
 Koya, Y. Nish
propagation in

with mecha

1

luence on t
nnot exist in t
se of d conver
Since the E

comes from t
nd asymmetr
c FP resonanc
an on-to-off E
is process. T
ent from contr
30]. 

hertz notch filt
cally based o
double cavitie
n investigated 
of the present
the applying 
ap can be easi
adjustment, th
tial applicatio

ntrol of the E
ing the spacin
anically tunab
range of nov

ht componen
cally induc

ghai Rising-S
gram of Shangh
1403000, Hujia
2, Zhejiang K

y under Grant N
ents Project fro
T-12-1052. 

rted guided-wa
pulses,” Opti

Kurz, “Modu
ficient biosensi
hnology, vol. 2

x, and M. Mill
resilient pub
ans. on Ima
01. 

hifuji, D. Arman
n two-dimension
anically tunab

127

the 
the 
rts 
IT 

the 
ric 
ces 
IT 
he 
rol 

ter 
on 
es, 
to 

ted 
to 

ily 
his 
ons 
EIT 
ng. 
ble 
vel 
nts, 
ed 

tar 
hai 
ang 
Key 
No. 
om 

ave 
ics 

ular 
ing 
20, 

ler, 
blic 
age 

nd, 
nal 
ble 



JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 13, NO. 2, JUNE 2015 128 

photonic-bands,” Optics Express, vol. 20, no. 16, pp. 
17271–17280, 2012. 

[5] R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, 
“Terahertz microfluidic sensor based on a parallel-plate 
waveguide resonant cavity,” Applied Physics Letter, vol. 95, 
no. 17, pp. 171113-1–171113-3, 2009. 

[6] E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T. I. 
Jeon, “Terahertz band gaps induced by metal grooves inside 
parallel-plate waveguides,” Optics Express, vol. 20, no. 6, 
pp. 6116–6123, 2012. 

[7] E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz 
notch and low-pass filters based on band gaps properties by 
using metal slits in tapered parallel-plate waveguides,” 
Optics Express, vol. 19, no. 16, pp. 14852–14859, 2011. 

[8] L. Chen, C.-M. Gao, J.-M. Xu, X.-F. Zang, B. Cao, and 
Y.-M. Zhu, “Observation of electromagnetically induced 
transparency-like transmission in terahertz asymmetric 
waveguide-cavities systems,” Optics Letter, vol. 38, no. 9, 
pp. 1379–1381, 2013. 

[9] V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. 
Mittleman, “Terahertz multichannel microfluidic sensor 
based on parallel-plate waveguide resonant cavities,” 
Applied Physics Letter, vol. 100, no. 23, pp. 
231108-1–231108-4, 2012. 

[10] E. S. Lee and T. Jeon, “Tunable THz notch filter with a 
single groove inside parallel-plate waveguides,” Optics 
Express, vol. 20, no. 28, pp. 29605–29612, 2012. 

[11] R. Mendis and D. M. Mittleman, “Comparison of the 
lowest-order transverse-electric (TE) and 
transverse-magnetic (TEM) modes of the parallel-plate 
waveguide for terahertz pulse applications,” Optics Express, 
vol. 17, no. 17, pp. 14839–14850, 2009. 

[12] V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, 
“Analysis of rectangular resonant cavities in terahertz 
parallel-plate waveguides,” Optics Letter, vol. 36, no. 8, pp. 
1452–1454, 2011. 

[13] L. Chen, Z.-Q. Cao, F. Ou, H.-G. Li, Q.-S. Shen, and H.-C. 
Qiao, “Observation of large positive and negative lateral 
shifts of a reflected beam from symmetrical metal-cladding 
waveguides,” Optics Letter, vol. 32, no. 11, pp. 1432–1434, 
2007. 

[14] X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic 
waveguide filters with nanometeric sizes,” Optics Letter, vol. 
33, no. 23, pp. 2874–2876, 2008. 

[15] M. Yosuke, O. Toshihiro, H. Masanobu, F. Masuo, and N. 
Masatoshi, “Characteristics of gap plasmon waveguide with 
stub structures,” Optics Express, vol. 16, no. 12, pp. 
16314–16325, 2008. 

[16] X. Piao, S. Yu, S. Koo, K. Lee, and N. Park, “Fano-type 
spectral asymmetry and its control for plasmonic 
metal-insulator-metal stub structures,” Optics Express, vol. 
19, no. 11, pp. 10907–10912, 2011. 

[17] L. Chen, C.-M. Gao, J.-M. Xu, X.-F. Zang, B. Cai, and Y.-M. 
Zhu, “Observation of electromagnetically induced 
transparency-like transmission in terahertz asymmetric 
waveguide-cavities systems,” Optics Letter, vol. 38, no. 9, 
pp. 1379–1381, 2013. 

[18] X.-F. Zang, T. Zhou, B. Cai, and Y.-M. Zhu, “Single-photon 

transport properties in an optical waveguide coupled with a 
Λ-type three-level atom,” Journal of the Optical Society of 
American B, vol. 30, no.5, pp. 1135–1140, 2013. 

[19] X.-F. Zang, T. Zhou, B. Cai, and Y.-M. Zhu, “Controlling 
single-photon transport properties in a waveguide coupled 
with two separated atoms,” Journal of Physics B, vol. 46, no. 
14, pp. 145504-1–145504-6, 2013. 

[20] L. Chen, J.-M. Xu, C.-M. Gao, X.-F. Zang, B. Cai, and Y.-M. 
Zhu, “Manipulating terahertz electromagnetic induced 
transparency through parallel plate waveguide cavities,” 
Applied Physics Letters, vol. 103, no. 25, pp. 
251105-1–251105-4, 2013. 

[21] Y.-M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa, 
“Femtosecond acceleration of electrons under very high 
electric fields in bulk GaAs investigated by time-domain 
terahertz spectroscopy,” Applied Physics Letters, vol. 93, no. 
4, pp. 042116, 2008. 

[22] Y.-M. Zhu, T. Unuma, K. Shibata, and K. Hirakawa, “Power 
dissipation spectra and terahertz intervalley transfer gain in 
bulk GaAs under high electric fields,” Applied Physics 
Letters, vol. 93, no.23, pp. 232102-1–232102-3, 2008. 

[23] Y.-M. Zhu, L. Chen, Y. Peng, M.-H. Yuan, Y. Wen, and S.-L. 
Zhuang, “Temperature dependence of nonequilibrium 
transport time of electrons in bulk GaAs investigated by 
time-domain terahertz spectroscopy,” Applied Physics 
Letters, vol. 99, no. 2, pp. 022111-1–022111-3, 2011. 

[24] Y.-M. Zhu and S.-L. Zhuang, “Terahertz electromagnetic 
waves emit from semiconductor investigated by time 
domain terahertz spectroscopy,” Chinese Optics Letters, vol. 
9, no. 11, pp. 110007, 2011. 

[25] J.-M. Xu, L. Chen, L. Xie, S.-Q. Du, M.-H. Yuan, Y. Peng, 
and Y.-M. Zhu, “Effect of boundary condition and periodical 
extensionon transmission characteristics of terahertz 
filterswith periodical hole array structure fabricatedon 
aluminum slab,” Plasmonics, vol. 8, no. 3, pp. 1293–1297, 
2013. 

[26] R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, 
“Terahertz microfluidic sensor based on a parallel-plate 
waveguide resonant cavity,” Applied Physics Letters, vol. 95, 
no. 17, pp. 171113-1–171113-3, 2009. 

[27] Y. Huang, C.-J. Min, and G. Veronis, “Subwavelength 
slow-light waveguides based on a plasmonic analogue of 
electromagnetically induced transparency,” Applied Physics 
Letters, vol. 99, no. 14, pp. 143117-1–143117-3, 2011. 

[28] Z.-H. Han and S. I. Bozhevolnyi, “Plasmon-induced 
transparency with detuned ultracompact Fabry-Perot 
resonators in integrated plasmonic devices,” Optics Express, 
vol. 19, no. 4, pp. 3251–3257, 2011. 

[29] Z.-Y. Li, Y.-F. Ma, R. Huang, R. J. Singh, J.-Q. Gu, Z. Tian, 
J.-G. Han, and W.-L. Zhang, “Manipulating the 
plasmon-induced transparency in terahertz metamaterials,” 
Optics Express, vol. 19, no. 9, pp. 8912–8919, 2011. 

[30] J.-Q. Gu, R. Singh, X.-J. Liu, X.-Q. Zhang, Y.-F. Ma, S. 
Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. 
Taylor, J.-G. Han, and W.-L. Zhang, “Active control of 
electromagnetically induced transparency analogue in 
terahertz metamaterials,” Nature Communications, vol. 3, 
1151-1–1151-6, 2012. 



CHEN et al.: Resonances Characteristics of Parallel Plate Waveguide Cavities 129

Lin Chen was born in Jiangsu, China in 1980. 
He received the B.S. and M.S. degrees from 
the Southeast University in 2002 and 2005, 
both in electrical engineering, and the Ph.D. 
degree from the Shanghai Jiao Tong 
University in 2008, in optics, respectively. 
Now he is an associate professor with the 
University  of  Shanghai  for  Science  and  

Technology. His research interests include terahertz waveguide, 
meta-material, and lab on chip. He has been awarded the “Chen 
Guang” Scholar in 2009, China Instrument Society-JinGuofan 
Youth Award in 2011, and Shanghai “rising star” Scholar in 2014. 
He has published more than 40 SCI papers and 20 patents. As the 
project leader, he is also responsible for several national funds and 
funds supported by Shanghai government. 
 

Dan-Ni Wang was born in Anhui, China in 
1991. She received her B.S. degree from the 
Shanghai Normal University in 2013. She won 
the National Scholarship and Shuikang Feng 
Scholarship in 2012. She was awarded the 
outstanding graduates of Shanghai in 2013. 
Now, she is a postgraduate with the University  
of Shanghai for Science and Technology. Her 

research interests include terahertz waveguide, meta-material, and 
sensor chip. 
 

Yi-Ming Zhu graduated from the University 
of Tokyo, now he is a professor with the 
University of Shanghai for Science and 
Technology, the vice director of the Shanghai 
Key Lab of Modern Optical System, and the 
associate dean of the Research Institute of 
Optoelectronics. He studied at Shanghai 
Jiaotong University from 1998 to 2002 and  

received a bachelor degree in apply physics. In 2003, he began to 

work as an assistant researcher with the Research Center for 
Advanced Science and Technology, University of Tokyo. He won 
the Japanese Government Scholarship in 2004 and studied 
electronics engineering in University of Tokyo as a doctor 
candidate. He gained his Ph.D. degree in electronics engineering 
in 2008. He has published more than 100 papers on SCI/EI 
journals as the first author or corresponding author, including two 
publication on Nature Group series, more than 20 papers in SCI 
section II and above, He has also presided more than 20 projects 
at the national and ministerial/provincial levels, which include one 
project supported by National 863 Project, 3 projects supported by 
National Natural Science Foundation of China, 2 sub-projects 
supported by National 973 Project, 2 projects supported by Major 
National Development Project of Scientific Instrument and 
Equipment, etc. 
 

Yan Peng was born in Anhui, China in 1982. 
She received the B.S. degree from the Anhui 
Normal University in 2004 and the Ph.D. 
degree from the East China Normal University 
in 2009, both in physics. She is an associate 
professor with the University of Shanghai for 
Science and Technology. Her research interests 
include ultrafast optics, terahertz, high-order  

harmonic generation, and microstructure.  
As a project leader, Dr. Peng is responsible for the National 

Program on Key Basic Research Project of China (973 Program, 
sub-project), two National Development Projects of Scientific 
Instrument and Equipment, one National Natural Science 
Foundation of China, one State Scholarship Fund, and two 
projects from Shanghai Municipal Education Commission. She 
was awarded the “Chen Guang” Scholar in 2012, China 
Instrument Society-Jin Guofan Youth Award, and “Excellent 
Woman” Award of University of Shanghai for Science and 
Technology. Up to now, she has published more than 30 SCI 
papers and 20 patents. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


