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Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media
with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects.
When two point sources with the separation distance of /40λ are covered with the illusion media ( 0λ is
the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point
sources with the separation distance larger than /20λ in free space, leading to the far-field high resolution
effects (in free space, the separation distance of /40λ is less than half-wavelength, and thus the two point
sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to
design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simu-
lations are carried out to verify the performance of our device.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

As a powerful tool, TO has attracted much attention for its
major application in flexibly and accurately manipulating wave
propagation paths in the past few years [1–3]. The main principle
is based on the form invariance of Maxwell equations under co-
ordinate transformation. By using a proper coordinate transfor-
mation, TO can be applied to design many fantastic devices, such
as cloaks [4–21], field rotator [22,23], field concentrator [24],
tunnel waves [25], antenna [26,27], retrodirective reflector [28],
transparent wall [29], illusion systems [30–33], optical switch [34]
and power combiner [35].

In this paper, TO is mainly applied into the field of high re-
solution effects. As is well known, the resolution of a conventional
optical system is constrained to about half wavelength due to the
loss of high spatial frequency information carried in the evanes-
cent waves [36]. To break the diffraction limit, many approaches
were adopted to realize high resolution effects. At first, the near-
field scanning optical microscope was used to capture the eva-
nescent waves from the near-field of the sample by a scanning
probe [37–38]. However, it is inability to simultaneously observe
different parts of the imaged objects and cannot produce a far-
field direct imaging. Subsequently, superlens [39] with negative
refraction index was proposed to allow the amplification of eva-
nescent waves via the coupling between evanescent waves and
mzhu@usst.edu.cn (Y. Zhu).
surface plasmons. Although such superlens amplifies evanescent
waves, it does not change the inherent exponential decaying
character of evanescent waves in free space. In other words, both
of them are confined to near-field high resolution and cannot
produce a direct optical far-field imaging. In addition, hyperlens
can convert evanescent waves to propagating waves by using an-
isotropic materials with hyperbolic dispersions [40–42], resulting
in high resolution effects in the far-field region. And, until recently,
hyperlens is the top choice to achieve high resolution. Here, we
propose another way of illusion media to achieve high resolution
effects in the far-field region. Different from hyperlens based on
anisotropic materials, our design only demands layered homo-
geneous and isotropic materials, which is thus easier to realize.
Furthermore, other applications of our device, such as tunable
high-directivity antenna and an angle-dependent floating carpet
cloak, are also investigated.
2. Theory

The geometric structure of the new illusion media is shown in
Fig. 1(a). The whole transformation processes related to our de-
signs are described as follows: The region of AFEDPQ and ABCDMN
in virtual space are compressed into the region of ABCDPQ and
AFEDMN in real space respectively. Meanwhile, in order to ensure
the continuity of the whole transformed space, the transforma-
tional relationship in the hexagon region of ABCDEF (region VII)
should be satisfied as x x y y z z, ,′ = ′ = − ′ = (the index of trans-
formation medium in this region is n¼�1). The coordinate of each
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Fig. 1. (a) Schematic of the illusion media. (b) Schematic of layered structure with
two kinds of isotropic materials to simplify the material parameters of the illusion
media.
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point is defined as follows: B (�a1, d/2), C (a1, d/2), E (a1, �d/2),
F (�a1, �d/2), A (�a1�d, 0), D (a1þd, 0), Q (�a1, d), P (a1, d), M
(a1, �d), N (�a1, �d). The transformation equations between the
real space and the virtual space can be expressed as:

Regions I and IV

x x y y d z z,
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3
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where “þ” corresponds to regions I, II or VI and “�” corresponds
to regions III, IV or V. According to the principle of the TO, the
corresponding permittivity and permeability in region I–VII can be
calculated by using Y Y det/ ( )TΛ Λ Λ′ = .
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From Eqs. (6) and (7), the constitutive electromagnetic para-
meters are spatially invariant. According to EMT, such homo-
geneous but anisotropic materials can be replaced by using an
alternating layered medium with homogeneous and isotropic
materials. Based on EMT, a real symmetric tensor can be mapped
into diagonal tensor by rotating a certain angle θ as follows:
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The angle θ can be obtained by using the following formula:
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According to the EMT, if the layers are parallel to the local x–z
plane and the thickness of each medium layer is much less than
the wavelength, Eq. (10) can be simplified written as
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where 1ϒ , 2ϒ are the parameters of two isotropic mediums, η is the
ratio of thicknesses between these two alternating layered med-
iums. For the transverse electric (TE) wave, i

A
1 μϒ = and i

B
2 μϒ = ,

where i
Aμ and i

Bμ correspond to the permeability parameters of
the layered isotropic medium-A and medium-B, respectively (i¼ I–
VI). Thus, in the case of η¼1, the layered homogeneous and iso-
tropic parameters required in regions I–VI are 5.8284j

Aμ = ,

0.1716j
Bμ = , 3jε = (j¼ I and IV) and 8.769k

Aμ = , 0.114k
Bμ = , 3kε =

(k¼ II, III, V and VI).
3. Numerical simulation and discussion

First, we investigate far-field high resolution effects by virtue of
the illusion media. In region I and IV, the region QPCB in real space
is mapped into the region QPEF in virtual space, a small long-
itudinal distance (d) in the region QPCB would be equivalent to a
larger longitudinal distance (D) in virtual space, with D¼3d. Thus,
the wavelength in region I and IV is satisfied as 30λ λ= ¯ (in y-di-
rection), where 0λ and λ̄ are the free-space wavelength and in-
material wavelength, respectively. If two point sources with se-
paration distance /40λ in free space, they cannot be distinguished
due to the diffraction limit. But, when these two point sources are
embedded in the transformation region I and IV, the separation
distance is still /40λ (and /4 3 /40λ λ= ¯ ), but they can be easily dis-
tinguished. Here, we want to emphasize that although /4 3 /40λ λ= ¯
in physical space, the distance between these two point sources in
transformation region I and IV is enlarged effectively to that of
3 /40λ in the virtual space, as described in Ref [43]. When two point
sources O1, O2 are located at (0, 0.315 mm) and (0, 0.269 mm),



Fig. 2. The field distribution of two sources (O1 and O2) (a1) or (O3 and O4) (b1) in free space. The field distribution of two sources (O1 and O2) (a2) or (O3 and O4) (b2) covered
with the illusion media. The field distribution of two sources (O1′ and O2′) (a3) or (O3 and O4′) (b3) in free space. (c) The corresponding far-field patterns at r¼1.875 mm
(10 0λ ) of (a1) (black line), (a2) (red line) and (a3) (blue line). (d) The corresponding far-field patterns at r¼1.875 (10 0λ ) mm of (b1) (black line), (b2) (red line) and (b3) (blue
line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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respectively, with frequency of 1.6 THz, the separation distance
between these two point sources is about /40λ (0.046 mm), thus
the two sources cannot be distinguished from each other in free
space (Fig. 2(a1)). When the two sources (O1 and O2) are em-
bedded in the region QPCB (Fig. 2(a2)), both of them are mapped
into O1′ (0, 0.305 mm) and O2′ (0, 0.167 mm), respectively, in vir-
tual space. Fig. 2(a3) depicts the field distribution of two sources
located at O1′ and O2′, respectively, in free space. The distance
between these two sources (O1′ and O2′) is about 0.74 0λ
(0.138 mm), and thus the two sources can be easily separated in
free space based on the diffraction limit theory. Both the field
distributions in Fig. 2(a2) and (a3) have the same features. That is
to say, based on the illusion media, the field distribution of two
point sources (O1 and O2) with the separation distance of /40λ (or
3 /4λ̄ in transformation medium) in Fig. 2(a2) is equivalent to the
case of two point sources (O1′ and O2′) with the separation dis-
tance of 0.74 0λ in Fig. 2(a3) in free space, resulting in high re-
solution effects (as described in Ref [43]). Now, we perform a
further study of high resolution effects with only one of the two
point sources in physical space embedding into the region QPCB.
Two point sources O3, O4 are located at (0, 0.325 mm) and (0,
0.279 mm), respectively, as shown in Fig. 2(b1). They still cannot
be distinguished from each other in free space. When the point
source O4 embedded in the region QPCB as shown in Fig. 2(b2), it is
mapped into O4′ (0, 0.197 mm) in virtual space. Fig. 2(b3) depicts
the field distribution of two sources located at O3 and O4′, re-
spectively, in free space. The distance between these two sources
(O3 and O4′) is about 0.68 0λ (0.128 mm), and the two sources can
be distinguished in free space. The field distributions in Fig. 2(b2)
and (b3) are nearly the same, which means that based on the il-
lusion media, the field distribution of the two sources (O3 and O4)
with the separation distance of /40λ in Fig. 2(b2) is also equivalent
to the case of two sources (O3 and O4′) with the separation dis-
tance of 0.68 0λ in Fig. 2(b3) in free space, leading to high resolution
effects. In order to demonstrate the high resolution effects in the
far-field region, we show the corresponding far-field patterns in
Figs. 2(c) and (d). Obviously, the two point sources without coating
with the transformation medium are almost overlapped with each
other with nearly homogeneous field intensity along a straight line
with radius r¼1.875 mm (r¼10λ0) and thus cannot be dis-
tinguished in free space (see black lines in Figs. 2(c) and (d)) as
discussed in Ref [43]. However, when the two point sources are
covering with the illusion media (see red lines in Fig. 2(c) and (d)),
the corresponding far-field pattern shows a series of dips and
peaks, and it is nearly equivalent to the case of two point sources
with separation distance of 0.74 0λ (or 0.68 0λ ) in free space (see



Fig. 3. (a) The schematic of the transformation of the antenna arrays inside the region VII (the blue line stands for the radiation direction of the original antenna arrays while
the green line stands for the radiation direction of the mirror-reflection symmetry antenna arrays). The field distribution of the antenna array in free space when the
radiating direction of the antenna arrays are 120° (b), 135° (c) or 150° (d), respectively. The field distribution of the antenna array covered with the illusion media when the
radiating directions of the antenna arrays are 120° (b1), 135° (c1) or 150° (d1), respectively. The field distribution of the antenna array in free space when the radiating
directions of the antenna arrays are 60° (b2), 45° (c2) or 30° (d2), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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blue lines in Fig. 2(c) and (d)). Meanwhile, the four peaks and the
four dips in the far-field patterns are induced by the coherent effect
of the two distinguished point sources (O1′ and O2′; O3 and O4′),
demonstrating far-field high resolution effects. Therefore, we can
achieve far-field high resolution effects by using the illusion media.

Next, we investigate tunable high-directivity antennas by using
this illusion media. Here, a nine-element point sources array is
designed to simulate the high-directivity antennas (the proportion
of the current distribution on each point source is 1/70:4/35:2/5:4/
5:1:4/5:2/5:4/35:1/70 with the operating frequency of each point
source is 2 THz), and the radiation angle of the antenna arrays in
free space is 0θ , as shown in Fig. 3. In this case, the antenna arrays



Fig. 4. (a) The field distribution when a Gaussian beam is launched at 45° toward
the ground; (b) The field distribution when a circular-shaped PEC is placed above
the ground plane; (c) The field distribution when the same circular-shaped PEC is
covered with the illusion media.
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are embedded into the region VII. According to the transformation
relationship in region VII (x x y y z z, ,′ = ′ = − ′ = ), each point
source is mapped to its mirror-reflection symmetry point with
respect to x axis. So, when the antenna arrays are embedded into
the region VII, the corresponding radiation angle θα outside the
illusion media can be described by 180 0θ θ= −α , as shown in Fig. 3
(a). Fig. 3(b–d) shows the field distribution of the antenna arrays in
free space when the radiating directions of the antenna arrays are
120°, 135° and 150°, respectively. When they are covered with the
illusion media, the radiating directions of the antenna arrays
outside the illusion media are 60° (Fig. 3(b1)), 45° (Fig. 3(c1)) and
30° (Fig. 3(d1)), respectively. Fig. 3(b2), (c2), and (d2) shows the
field distribution of the antenna arrays in free space when the
radiating directions of the antenna arrays are 60°, 45° and 30°,
respectively. The field distributions in Fig. 3(b2), (c2) and (d2) are
nearly the same as those in Fig. 3(b1), (c1) and (d1), respectively,
demonstrating the tunable effect of the illusion media. Therefore,
we can flexibly control the radiation direction of the antenna ar-
rays by rotating the transformation medium.

Finally, we study an angle-dependent floating carpet cloak
based on such illusion media. Fig. 4(a) shows the field distribution
when a 2 THz Gaussian beam transmits to a PEC ground plane
with incident angle of 135°. When a circular-shaped PEC is em-
bedded into the propagating path of the incident electromagnetic
wave, significant scattered field is induced by the PEC as shown in
Fig. 4(b). When the same PEC is covered with the illusion media
(Fig. 4(c)), the incident Gaussian beam is rotated 90° clockwise
inside transformation region VII and then irradiates straight on the
ground plane without interacting with the circular-shaped PEC.
The field distribution in Fig. 4(c) is nearly the same as that in Fig. 4
(a), verifying the cloaking property of the illusion media. Here, it
should be noted that the PEC is placed above the ground plane
rather than closed to the ground plane and the illusion media is
only valid for detecting waves of specific incident angles. So, the
illusion media can be considered as an angle-dependent floating
carpet cloak, which successfully protects the PEC flying over the
ground plane from detecting waves of specific incident directions.
4. Conclusion

In summary, we have theoretically proposed a new illusion
media by using homogeneous and isotropic materials to realize far
field high resolution effects. In addition, tunable high-directivity
antenna and an angle-dependent floating carpet cloak based on
such illusion media are also investigated. Both the theory model
and numerical simulations prove that the new illusion media has
many potential applications in the field of transformation optical
devices.
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