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Abstract: Due to its high sensitivity and because it does not rely on the magneto-optical response, ter-
ahertz (THz) emission spectroscopy has been used as a powerful time-resolved tool for investigating
ultrafast demagnetization and spin current dynamics in nanometer-thick ferromagnetic (FM)/heavy
metal (HM) heterostructures. Here, by changing the order of the conductive HM coating on the FM
nanometer film, the dominant electric dipole contribution to the laser-induced THz radiation can be
unraveled from the ultrafast magnetic dipole. Furthermore, to take charge equilibration into account,
we separate the femtosecond laser-induced spin-to-charge converted current and the instantaneous
discharging current within the illuminated area. The THz emission spectroscopy gives us direct
information into the coupled spin and charge dynamics during the first moments of the light–matter
interaction. Our results also open up new perspectives to manipulate and optimize the ultrafast
charge current for promising high-performance and broadband THz radiation.

Keywords: spintronic THz emitters; ultrafast demagnetization; spin-to-charge current conversion;
THz emission spectroscopy

1. Introduction

Laser-induced ultrafast magnetization phenomena in materials attracts strong interest
from both basic knowledge and technology perspectives [1–5]. The ability to efficiently
control the spin of ferromagnets on a femtosecond (fs) timescale paves the way to ul-
trafast optical writing of magnetic memory and data processing [6–10]. Although many
experiments and theories have been presented lately, the clear physical mechanism of the
processes occurring during the interaction of ultrashort laser pulses with the spin order
remains largely unclear, even though understanding dynamics on this timescale is critical
for both physical and practical insights into the spin diffusion, precession, relaxation, and
spin–orbit interaction [11–15].

The key experimental techniques routinely employed so far are the time-resolved
magneto-optical Kerr effect (TR-MOKE) [16,17] or soft X-ray pulses [18]. These techniques
have provided invaluable information concerning the transient evolution of magnetization
in magnetic materials on fs and longer timescales. However, both of these techniques,
as based on the pump–probe cross-correlation, are inherently ambiguous towards the
material response during the interaction of the laser pulse with the material. This is due
to the zero-time ambiguity of the pump-probe measurement and the possible occurrence
of coherent effects or artifacts between pump and probe pulses [5]. As the propagation
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of terahertz (THz) waves in materials is mainly affected by the motion of the electrons, it
provides the most direct way to probe the magneto-transport properties on an ultrafast
time scale. Over the past years, THz time-domain spectroscopy (THz-TDS) has provided
the opportunity for not only investigating biomedical systems [19,20], but also uncovering
the spin dynamics in both antiferromagnetic [21–25] and ferromagnetic materials [26–30].
Furthermore, in contrast to the TR-MOKE method, THz emission spectroscopy does not
rely on the magneto-optical response and has been used as a fingerprint identification of the
ultrafast demagnetization [31,32], inverse spin Hall effect (ISHE) [33–35], inverse spin–orbit
torque [36], inverse Rashba–Edelstein effect (IREE) [37–39], and anomalous Hall effect
(AHE) [40]. In addition, THz emission spectroscopy has the capability of small magnetic
field change detection in the µT range [41] and near-field imaging with subwavelength
resolution [42].

It is widely understood that the ultrafast response of a laser-excited pure ferromagnetic
system is dominated by the ultrafast demagnetization (UDM) [1,43]. In a ferromagnetic
(FM) thin film, the excess energy of laser-excited hot electrons is transferred to spin and lat-
tice subsystems, leading to the local magnetic dipole THz radiation, E(t) ∝ ∂2M

∂t2 [31,32,44],
where M is the magnetization of the FM layer. On the other hand, the spin-to-charge cur-
rent conversion (SCC) via ISHE, IREE, or AHE converts the spin current (js) into a charge
current (jc) via spin–orbit coupling, jc ∝ js × M

|M| . Such a response acts as an electronic

dipole THz radiation, E(t) ∝ ∂jc
∂t [45–47]. Remarkably, the working principle of the THz

radiation remains entangled with the microscopic origin on how an ultrafast laser pulse
modifies the magnetic system after fs laser excitation. In addition, the far field detection
of THz emission does not give access to the exact current distribution in the emitter. To
disentangle the physical origins is also crucial to maximize the generation efficiency of
THz pulses.

In this work, we use time-resolved THz emission spectroscopy to study the spin and
charge dynamics in laser-excited MgO (substrate)//Pt/CoFeB/Ta and MgO//Ta/CoFeB/Pt
heterostructures. Such a choice of samples allowed us to accurately trace the measured
THz emission back to the transients of UDM and SCC contributions at any moment during
and after the interaction of the fs laser pulse with the sample. As a result, we gain direct
access to the zero-time response of the laser-excited transient spin voltage dynamics in
ferromagnetic/heavy metal (FM/HM) heterostructures, which is knowledge difficult to
obtain by any other methods. Our work demonstrates potential for an ultrafast THz
magnetometer and spintronic THz emitter.

2. Materials and Methods
2.1. Thin Films Preparation

Two types of samples were prepared. Here, 6 nm-thick Pt(2)/CoFeB(2)/Ta(2) and
Ta(2)/CoFeB(2)/Pt(2) heterostructure films were grown on single-crystalline MgO (100)
substrates. For the Pt/CoFeB/Ta sample, the 2 nm-thick Pt layer was firstly deposited by
magnetron sputtering on a MgO substrate. Then, a 2 nm-thick CoFeB layer was deposited
on the Pt layer, and a 2 nm-thick Ta layer was deposited on the CoFeB. The deposition rate of
the Pt (the DC power was 10 W) layer, the CoFeB (the DC power was 10 W) layer, and the Ta
(the DC power was 10 W) layer were 0.3, 0.15, and 0.3 Å/s at 7× 10−3 Torr, respectively. The
samples were annealed in situ after deposition at 250 ◦C for 60 min. For the Ta/CoFeB/Pt
sample, the deposition process is similar under identical preparation conditions.

2.2. Terahertz Emission Spectroscopy

In Figure 1a,b, the conceptual schematic of our THz emission spectroscopy is shown.
The sample is nearly homogeneously pumped by a normal incident of 800 nm (photon
energy of 1.55 eV), pulse duration of 55 fs, and a repetition rate of a 1 kHz optical pulse.
The beam is split into a pump beam and a probe beam for THz detection. The pump beam
is angled at a normal incident onto the samples. The magnetization of the sample was
set by an applied external magnetic field parallel to the y-axis (in-plane). The amount
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of externally applied magnetic field was kept ~200 mT (sufficient to saturate the CoFeB
layer). As the heterostructure is thinner than the laser penetration depth (~20 nm) [48], the
excitation of hot electrons can be assumed to be homogeneous across the thickness of the
film. We analyze the THz emissions from both SCC and UDM contributions by measuring
the far-field free-space electro-optic sampling (EOS). The linearly-polarized THz emission
was collected by a parabolic mirror and detected by a 1 mm-thick <110> ZnTe crystal gated
by 55 fs, 800 nm laser pulses, using two parabolic mirrors. A chopper modulates the pump
laser beam with a frequency of 0.5 kHz. The emitted THz pulses are sampled by delaying
the probe laser beam time, and the amplified signal is recorded by a lock-in amplifier. All
the measurements were performed at room temperature, and the spectrometer was purged
with dry air to avoid the THz absorption by atmospheric water.
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Figure 1. Generation of THz radiation from trilayer MgO//Pt/CoFeB/Ta and MgO//Ta/CoFeB/Pt
stacks. (a) Schematic geometry for the THz emission spectroscopy in the transmission configuration.
(b) The trilayer structure is excited by an 800 nm fs pump pulse and applied in-plane magnetic
field of ±200 mT. (c) Physical origins of SCC- and UDM-based THz generations. The black circles
with arrows show the electrons with spins. The light red arrow and solid red arrow represent the
magnetization M of the CoFeB layer, before and after ultrafast demagnetization, respectively. The
black dotted arrows represent the diffusion of spin currents toward the Ta or Pt layer. The white
dotted arrows represent the deflection and conversion of spin currents ±js into charge currents jc in
both the Pt and Ta layers.

Figure 1c shows that the excitation induces a transient spin voltage that launches spin
currents flowing from CoFeB to Ta and from CoFeB to Pt. The trilayer emitter converts the
bidirectional spin currents (−js and +js) flowing into the lateral charge currents jc within
Ta and Pt, due to the ISHE. The time-varying jc perpendicular to the js (scales with the M of
CoFeB) and the direction of M gives rise to the emission of THz transients. We chose Ta and
Pt because their signs of the spin Hall angle are opposite and, thus, their THz emissions add
up [49]. Since the thickness of the used materials is small (nanometers), the THz radiations
originating from the two HM layers have a negligible phase difference. In addition, a
sizable contribution coming from the time-dependent UDM is also expected [31,32,50].
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3. Results and Discussion

According to the experimental scheme shown in Figure 1, Figure 2a shows the
typical time-domain THz EOS signals, EEOS(t), generated from both Pt/CoFeB/Ta and
Ta/CoFeB/Pt stacks at a pump fluence of 1.0 mJ/cm2. Both THz transients are inverted
symmetrically, as the direction of M is reversed with an external magnetic field of±200 mT.
The polarization of the emitted THz pulses for both samples follows the direction per-
pendicular to M (along the y-axis), which indicates a strong connection between the THz
emission and the magnetic order. We have also measured the THz emission of a 0.5 mm-
thick ZnTe reference emitter under the same excitation condition. As shown in Figure 2b,
the normalized Fourier spectra |EEOS(ω)| versus frequency ω/2π of ZnTe covers a slightly
higher range of frequencies, as compared with the trilayer stacks.
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Figure 2. Terahertz waveforms at the different excitation geometries. (a) THz EOS waveforms EEOS(t)
of the photoexcited MgO//Pt/CoFeB/Ta and MgO//Ta/CoFeB/Pt stacks. The zero-time delay
corresponds to the arbitrary starting point. (b) The corresponding normalized Fourier transform of
(a). The light-gray curve is the THz emission from a ZnTe crystal. (c) The pump fluence-dependence
of THz peak amplitude from two samples at ±H. Damage is not observed in the samples at the
maximum pump fluence used here.

Figure 2a shows that the polarity of THz emissions in the Pt/CoFeB/Ta is found to
reverse its sign, compared with the Ta/CoFeB/Pt, under the same experimental conditions.
Given that the optical absorbance does not depend on the order of the sample, thus, a
direction-dependent mechanism explains such polarity reversal of the THz emitted field.
As shown in Figure 1c, by reversing the order of the Ta and Pt layer, the SCC model
predicts a polarity reversal of the THz radiation owing to a reversion of charge currents
within bilateral HM layers. Figure 2c shows that the THz peak amplitude increases with
increased pump fluence and then reaches saturation. More THz waveforms at different
pump fluences can be found in the Supplementary Materials.

It is also noted that the absolute value of THz signal from Pt/CoFeB/Ta is larger than
that from Ta/CoFeB/Pt. That means the far-field EEOS(t) signals for two samples include
both SCC and UDM contributions. Under the simplified assumption that the polarity of
the THz emission by SCC is opposite for two samples, the UDM contribution does not
change under the fixed magnetic field. Thus, EPt/CoFeB/Ta

EOS (t) = EUDM
EOS (t) + ESCC

EOS(t) and
ETa/CoFeB/Pt

EOS (t) = EUDM
EOS (t)− ESCC

EOS(t). Therefore, the distinct contributions of UDM- and
SCC-based THz emission can be expressed as follows:

EUDM
EOS (t) =

(
EPt/CoFeB/Ta

EOS (t) + ETa/CoFeB/Pt
EOS (t)

)
/2 (1)

ESCC
EOS(t) =

(
EPt/CoFeB/Ta

EOS (t)− ETa/CoFeB/Pt
EOS (t)

)
/2 (2)
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Figure 3a,b plots the EUDM
EOS (t) (red) and ESCC

EOS(t) (blue) in the Pt/CoFeB/Ta and
Ta/CoFeB/Pt samples. The THz peak amplitude by EUDM

EOS (t) reaches around 37% in magni-
tude compared with ESCC

EOS(t), which is consistent with the result reported by Liu et al. [51].
The most remarkable finding is that THz emission efficiency of a trilayer stack can be
improved by optimizing the order of the Pt and Ta layers. Note also that the normalized
UDM- and SCC-based THz emissions exhibit similar temporal waveforms on the picosec-
ond time scales (inset of Figure 3a) and spectrum on the frequency domain (Figure 3c). In
Figure 3d, both UDM and SCC contributions are shown as functions of pump fluences
from 0.4 to 1.2 mJ/cm2. Both SCC and UDM increase with the pump fluence, indicating
that (1) hot electron transport is not hindered by the interface between CoFeB and HM
layers, and (2) UDM-based THz emission is proportional to the magnitude of ultrafast
demagnetization, before optical damage. All the experimental observations are consistent
with the result reported by Rouzegar et al., and strongly demonstrate that SCC and UDM
are driven by the same force, the transient spin voltage [52–54],

.
M ∝ js ∝ µ↑ − µ↓, where

µ↑ and µ↓ are the chemical potentials of majority- and minority-spin electrons in the FM
layer, respectively.
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Figure 3. The EEOS(t) is decomposed into SCC and UDM contributions. The temporal ESCC
EOS(t) and
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EOS(t) and

EUDM
EOS (t) of (a). (d) The THz peak amplitudes of SCC and UDM contributions versus pump fluence.

Note that the measured EEOS(ω) are the convolution of the transient THz field at the
emitter Eemit (ω) with the response function of our measurement setup Hspectr(ω) [55,56],
EEOS(ω) = Eemit (ω) × Hspectr(ω), where Hspectr(ω) accounts for the propagation func-
tion of the THz pulse from the emitter to the EOS detector (see Supplementary Mate-
rials for details). Thus, we further calculate the near-fields of the emitted THz radia-
tion ESCC

emit(t,±M) from the measured ESCC
EOS(t,±M), as shown in Figure 4a. As we are

only interested in odd effects in the sample magnetization, we, thus, focus on the signal

ESCC
emit(t) =

ESCC
EOS(t, +M) − ESCC

EOS(t, −M)
2 , as shown in Figure 4b, which minimizes the artifacts of

non-magnetic origin.
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Figure 4. (a) The near-fields of the emitted THz radiation ESCC
EOS(t) for opposite applied magnetic

fields with different pump fluences. (b) The difference ESCC
emit (t) =

ESCC
EOS(t, +M) − ESCC

EOS(t, −M)
2 odd in

M. (c) The temporal profiles for charge current jtot(t) (vertical offset for clarity). The solid lines are
the fits of Equation (4). (d) The complete charge current dynamics jtot(t) comprise both photoin-
duced SCC current jc(t) and restoration current jres(t), as shown by the red dashed and blue dotted
line, respectively.

According to the charge conservation, the photoinduced SCC current jc works as a
current source, which charges a capacity within the illuminated area. The system is tran-
siently charged locally. Then, the capacity will be discharged, which leads to a restoration
of charge neutrality current jres, which is dependent on the resistance of the surrounding
material [57]. Therefore, the dynamics of total charge current is as follows:

jtot(t) = jc(t) + jres(t) (3)

The preceding equation describes a restoration of a charged state to a charge neutrality
state. Figure 4c shows the measured total charge current transients jtot(t), which is propor-
tional to the time integration of the THz near-fields in Figure 4b. The jtot(t) pulse consists
of a positive peak followed by a negative one, which changes sign around 1.4 ps after onset.
To gain more insight into our data, jtot(t) is fitted by a current profile [58,59], as follows:

jtot(t) = ∑
i=c, res

Ai
eαi

eαi + 1
× eβi (4)

where αi =
(t − t0,i) − τrise, i/2

τrise,i/4 , βi = −
t − t0,i
τdecay,i

. Here, τrise,i and τdecay,i are the rise and decay
time constants of ji=c,res, respectively. Furthermore, Ai and t0,i are the amplitude and time
at peak of the current profile, respectively. The solid curves show the fitting results for
different pump fluences. To aid comparison, the individual jc(t) (red dashed curve) and
jres(t) (blue dotted curve) are separated, as shown in Figure 4d. In the beginning, the
system response jtot(t) rises rapidly with the slope of jc(t). After a very short time, the jtot(t)
decreases and change the sign, due to a negative contribution of jres(t). This restoration
current is asymmetric around its peak, and the peak of jres(t) is slightly delayed with respect
to the peak of jc(t). More figures of individual current dynamics at different pump fluences
can be seen in the Supplementary Materials.
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Figure 5 summarizes the extracted Ai, t0,i, τrise,i, and τdecay,i of two current pulses
versus the pump fluence. Figure 5a shows that the larger the pump fluence, the higher
the amplitude of the currents of jc(t) and jres(t). This is a trivial consequence of the fact
that due to the linear relationship between jc and js, the increase in amplitude results
from an increased excited spin current density upon deposition of the pump-pulse energy.
Importantly, we observe the different time positions of jc(t) and jres(t) with different pump
fluences. The t0,c for jc(t) is observed as being pump fluence-independent. On the other
hand, the t0,res of jres(t) is slightly increased with the increase in pump fluence (Figure 5b).
Figure 5 c,d shows that the rise and decay time constants of the charge currents are nearly
pump fluence-independent. Here, τrise = 0.74± 0.002 ps and τdecay = 0.33± 0.005 ps of
jc(t) correspond to the timescale of transient spin currents, which are much faster than the
3.10± 0.005 ps and 1.33± 0.090 ps of jres(t). The rise and decay of the jres(t) mainly depends
on the conductivity of the heterostructure. Therefore, a more proper consideration of the
complex interplay between spin voltage profile, spin-to-charge conversion, and material
properties is required to maximize and shape the THz emissions [60], which will be our
future research focus.
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Figure 5. Pump fluence evolutions of (a) the amplitude and (b) time at peak of the jc(t) and
jres(t) current profiles. Pump fluence-dependent (c) rise and (d) decay time constants of jc(t) and
jres(t), respectively.

4. Conclusions

In summary, we have shown that high-performance broadband THz emission arises
from both the magnetic dipolar radiation due to the ultrafast demagnetization and transient
current radiation due to the spin–charge conversion. We find that the UDM contribution
has the same time evolution as the SCC one, suggesting that they are driven by the same
force, namely a generalized spin voltage. Finally, by taking the charge equilibration into
account, we found that the THz generation depends on the overall superimposed fs laser-
induced spin-to-charge converted current and an instantaneous backflow current. Our
analysis distinguishes the contributions from the SCC and backflow charge current, which
is essential to the underlying spin dynamics and optimization of spintronic THz emitters.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Figure S1: (a) THz EOS waveforms EEOS(t) at different pump fluences
for two samples. (b) and (c) are the Fourier transform of Pt/CoFeB/Ta and Ta/CoFeB/Pt in (a),
respectively. Solid lines and dotted lines are the data measured with +H and −H, respectively;
Figure S2: The fittings of charge currents with jc(t) and jres(t) contributions at difference pump fluence
range from 0.4 mJ/cm2 to 1.2 mJ/cm2.
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