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Fig. 1 7-methylguanine. (a )Molecular structure ; (b ) THz characteristic spectra (gray. white, red, and blue
represent the C, H, O, and N atoms, respectively)
3.2 , .
, COMSOL o
. 3(a) s
R R L2o] 512 7.9 GHz
(PD , PI
s €,;,=23.5+0.01i,
) t =25 pm, p =
100 pm, 100 nm (Aw
( ) s
g=4 pm, w=95 pm,
h; =30 pm  h;=096.5 pm, )
3 . (a)
3 (b)
(200X 5 ()
Fig. 3 Terahertz resonance ring chip parameters.
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Fig. 2 Unit structure diagram of resonant ring
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Fig. 4 Spectral tests with different concentrations. (a ) Spectra of superstructures covered by different amounts of

7-methylguanine ; (b ) dependence of resonance peak shifting on the amount of 7-methylguanine
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Fig. 5 Spectral tests at different concentrations. (a ) Spectra of superstructures covered by different amounts of guanine ;

(b) dependence of resonance peak shifting on the amount of guanine
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Fig. 6 THz spectra of binary mixture. (a ) Spectra of the metamaterial chip covered by the binary mixture with different

mixing ratios (G:7-MG); (b) relationship between the total frequency shift of the binary mixture and individual

, 5
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frequency shift from the components in the binary mixture

7-MG A.G.T.C
7-MG
7(a) o

. ()
(b

X o
f(x+Ax)— f(x)=Af, (2)
Ar T-MG () TMG
sAS
7(b) . )
. 85 % .
23.35 pg 7-MG ;

Fig. 7 Terahertz spectra of the mixture before and after mixing with 7-MG. (a) Spectra of the metamaterial chip covered

by the multicomponent mixture before and after the addition of 23.35 pg 7-MG ; (b) relationship between the total
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Table 3 Comparison of 7-MG mass between the
experimental and theoretical results and the

corresponding relative error

Sample Actual Calculated Relative error
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Quantitative Detection of Biological Mixtures Based on Terahertz
Metamaterial Chip

Wang Qingfang, Wang Zeyun, Han Chao, Feng Zhengyun, Hao Yufan,
Wu Xu, Peng Yan’

School of Optical-Electrical and Com puter Engineering, University of Shanghai for Science and Technology ,
Shanghai 200093, China

Abstract

Objective Guanine is one of the four bases of deoxyribonucleic acid (DNA). It pairs with cytosine in the double
helix structure of DNA to maintain the stability of life activities. However , guanine methylation can affect the normal
operation of DNA. When guanine is methylated, it immediately depurinates and forms apurinic sites, causing DNA
alkylation damage and increasing cytotoxicity. One of the byproducts of guanine methylation, 7-methylguanine
(7-MG), is commonly used as a biomarker to assess alkylation damage. However, traditional medical methods, such
as gas chromatography-mass spectrometry (GC-MS ) and high-performance liquid chromatography (HPLC ) used to
detect 7-MG, are time-consuming, cumbersome, and costly. Therefore, medical research needs a new accurate and
swift method to detect guanine methylation. Furthermore, THz fingerprint spectral characteristics enable it to
effectively identify biomolecules. However, the detection limit of the traditional tablet pressing method is at
milligram level, which cannot meet the application requirements of low concentration detection (microgram and less)
in the biomedical field. Some researchers have proposed combining terahertz spectroscopy and metamaterial
biosensors; however, these metamaterial biosensors are limited to the detection of a pure substance and cannot
realize qualitative identification of substances and mixed quantitative analysis. The chip designed in this study was
tested on binary and multicomponent mixtures to check if it could predict the concentration of 7-MG in mixture
samples. Finally, the 7-MG content of the mixture was determined using the standard internal method and the
variation function of a pure 7-MG product. The minimum detection limit is 6.30 pg, which is 500 times lower than
2.95 mg by the traditional tablet pressing method. Furthermore, when 7-methylguanine and other substances are
mixed together, they exhibit different frequency shift changes on the chip, allowing high sensitivity qualitative
differentiation and quantitative detection from the mixture. This study provides important reference value for the

subsequent rapid detection of 7-MG content in human cell DNA , and the detection and treatment of diseases.

Methods In this paper, 7-methylguanine is considered as an example to design a metamaterial chip based on the
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capacitance and inductance effect to enhance THz detection sensitivity. First, the frequency shift response of 7-
methylguanine and guanine was measured through terahertz time-domain spectroscopy. The chip used in this study
was then tested on binary mixtures and multicomponent mixtures to check if it could predict the concentration of
7-MG in mixture samples. Finally, the 7-MG content of the mixture was determined using the standard internal

method and the variation function of a pure 7-MG product.

Results and Discussions In this paper., the relation between chip frequency shift and the amount of
7-methylguanine (Fig. 4 ) is obtained by conducting experiments. When the amount of sample increases, i.e.
When the concentration increases, the characteristic peak starts moving to a lower frequency (red shift ). The
nonlinear equation f(x )= aexp (bx )+ cexp (dx ) is obtained through function fitting, where f(x ) is the frequency
shift and x is the effective mass of the sample. The corresponding coefficients are : a =0.04336 , 6 =0.002242 ,
¢c=—0.04559 , d=—0.05696, and the goodness of fit of determination coefficient R* =0.9915 can be obtained.
The same test is performed on guanine (Fig. 5), the corresponding coefficient of guanine was a = 0.06861 ,
b=0.002499 , c=—0.06831,d=—0.02969, and the goodness of fit of determination coefficient R* =0.9895 was
obtained. These results show that for known samples, the content can be detected using the corresponding frequency
shift relation; for unknown samples, the curve of unknown samples can be deduced by testing samples of different
concentrations and fitting the frequency shift curve and comparing with the existing curve parameters to achieve
qualitative analysis of the unknown sample. From the test of the binary mixture, the frequency shift of the mixture is
found to be the superposition of the frequency shifts of individual substances in each group (Fig. 6 ). Then, the same
conclusion was made by the testing the multicomponent mixture (Fig. 7). This shows that the frequency shift effect
of each component in the mixture can be separately calculated, and the frequency shift amount follows the frequency
shift rule of pure product. Simultaneously, by comparing the actual value and the calculated result of the mixture
frequency shift, clearly, the total frequency shift of each substance is almost the superposition of the single-

frequency shift of each substance, with an accuracy >85% .

Conclusions This paper provides a new method for nondestructive, rapid, and accurate detection of molecular
methylation. Considering 7-MG and G as examples, a terahertz metamaterial chip is designed based on capacitive and
inductive effect. The detection limit of the chip can reach 6.30 pg, which is about 500 times smaller than that of
2.95 mg measured using the traditional pressing method. Here, the metamaterial chip is covered with different
concentrations of 7-MG and G. The specific change in absorption peak frequency shift allows for qualitative and
quantitative analysis of 7-MG and G. Furthermore, the mixture test confirms that the frequency shift of the mixture
is a superposition of the frequency shift of a single substance. Then, using the standard internal method and the
variation function of a pure 7-MG product, the content of 7-MG in the mixture can be calculated. This method can
also be used to identify other molecular methylation products, such as 6-methylguanine, which is formed through
guanine methylation, and 5-methylcytosine, which is formed through cytosine methylation. Hence, the findings of

this study can be used in the future to accurately detect human DNA methylation.
Key words terahertz technology; metamaterial chips ; quantitative detection of mixtures; 7-methylguanine
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