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Abstract: An Otto-like configuration for the excitation of graphene surface plasmon polaritons
(GSPPs) is proposed. The configuration is composed of a metallic grating-dielectric-waveguide
structure and a monolayer graphene with a subwavelength vacuum gap between them. The
evanescent field located at the bottom surface of the dielectric waveguide corresponding to
grating-coupled guided-mode resonances (GMRs) is utilized to efficiently excite the highly
confined GSPPs. The finite difference time domain method is used to investigate the behaviors of
the GMR-GSPP hybrid modes. The dispersion relations of GMRs and GSPPs are calculated and
the numerical results further identify the excitation of GMR-GSPP hybrid modes. By changing
the gap between the graphene layer and the bottom of the dielectric waveguide and the Fermi
energy of graphene, the resonant frequencies of GMR-GSPP hybrid modes can be continuously
tuned. When the optimized excitation condition is satisfied, the maximum energy enhancement
factor in the gap can reach about 500 at the resonant frequencies. The proposed structure can be
used to realize highly sensitive, compatible with planar fabrication technology, and electrically
(mechanically) tunable sensors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Graphene surface plasmon polaritons (GSPPs) have attracted much attention because of their low
dissipation, strong localization, and tunable resonant frequencies [1–3]. Due to the mismatch of
the dispersion relations, the GSPPs cannot be directly launched by the incident electromagnetic
waves propagating in free space. Because the dispersion curve of GSPP is always lying to the
right of the light line, additional wavevector compensation needs to be introduced to excite the
GSPPs. Previous studies have shown that the excitation of the GSPPs by grating coupling [4–6]
is one of the most common methods to solve the momentum mismatch. The basic idea is that
the evanescent diffraction modes supported by gratings can provide large in-plane momentums
for p-polarized incident electromagnetic waves. Another widely-used way to overcome the
mismatch of wavevector is through the prism coupling scheme (Otto and Kretschmann-Raether
configurations) [7], in which the incident light (p-polarized) passing through the prism with a
higher index of refraction suffers total internal reflection on the surface as well as the generation
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of evanescent waves to meet the wavevector match condition of GSPPs. With the development
of near-field optics, the compensation of wavevector can also be provided by the near-field
evanescent fields by using metal tips of scanning near-field optical microscopes [8,9]. There
are also other ways to excite GSPPs, such as by using electron beams [10], dipolar sources [11],
and the patterned graphene [12]. The graphene-based devices have potential applications in
bio-sensing and active functional devices [13–18].

Recently, various phenomena related to the coupling between two electromagnetic modes, for
example, electromagnetically induced transparency [19–21], Fano resonance [22,23], and hybrid
plasmonic-photonic resonators [24,25], have attracted many interests and attentions. Hayashi
et al., have demonstrated a structure composed of a prism, a thin metal layer, and a multilayer
dielectric waveguide, in which the guided-mode resonances (GMRs) can be effectively launched
by the prism-induced SPPs [26,27]; and because of the coupling between the SPPs and the GMRs,
the electromagnetic energy is effectively transferred from the SPP modes to the GMR modes,
which results in a strong enhancement of field in the waveguide. Subsequently, Hua et al., have
proposed a planar structure composed of a metallic grating and a multilayer dielectric waveguide
to investigate the coupling of SPPs and GMRs and the energy localization in the waveguide [28].
In the above investigations, the SPPs are directly excited, and due to the evanescent field-mediated
coupling between SPPs and GMRs, the GMRs are indirectly launched. However, the inverse
case has not been studied.
In this paper, strongly coupled GMR-GSPP hybrid modes supported by a planar structure

are theoretically investigated. The structure consists of a silver grating, a slab dielectric (Si)
waveguide, a subwavelength vacuum gap, and a monolayer graphene (from top to bottom).
Through the metallic grating, the normally-incident transverse-magnetic (TM) waves with
the electric field direction perpendicular to the metallic strips are effectively coupled into the
GMR modes of the slab dielectric waveguide at resonant frequencies. The GMR modes suffer
total internal reflection at the waveguide/vacuum interface, which leads to the generation of
evanescent fields in the vacuum gap. When the energy and momentum conservation conditions
are both satisfied, the evanescent-field-mediated GMR-GSPP modes can be launched and the
electromagnetic energy is effectively squeezed into the subwavelength vacuum gap. Different
from the conventional low-quality-factor GSPPs, the strongly-coupled GMR-GSPP hybrid modes
introduce very sharp features in the reflection spectra. Meanwhile, the electromagnetic energies
associated with the GMR-GSPP modes are mainly localized in the gap, which results in a higher
energy enhancement factor. Compared with the prism coupling scheme, the proposed structure
is compatible with the planar-integration techniques and no precise angle control is needed to
launch the GMR-GSPP modes. In addition, by changing the dimension of the gap and Fermi
energy of graphene, the resonant frequencies of GMR-GSPP mode can be tuned. All the above
features are beneficial for realizing high-performance sensors.

2. Results and discussion

As shown in Fig. 1(a), the proposed device consists of a straight silver grating, a slab dielectric
waveguide, a subwavelength vacuum gap, and a free-standing monolayer graphene. For simple
clarity, the substrate to support the monolayer is not included. The periodicity, duty cycle, and
strip height of the grating, are p=69 µm, 50%, and 1 µm, respectively. The thickness of the slab
waveguide is 46 µm, and the relative dielectric constant is 12.25 (lossless silicon). A commercial
electromagnetic simulation package based on finite difference time domain method (FDTD) [29]
is used to compute the reflectance and field distribution. The relative dielectric constant of silver
is described by the Drude model,

ε(ω) = 1 −
ω2
p

ω2 + iγω
(1)



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 13226

where the parameters used in the Drude model for silver are plasma frequency ωp=1.37×1016

rad·s−1 and the scattering rate γ=7.29×1013 rad·s−1 [30], ω is the angular frequency of the
incident light, and i is the imaginary unit. In the terahertz frequency range, the imaginary part
can be omitted, because silver can be treated as a perfect electric conductor. Then, Eq. (1) can
be simplified as ε(ω)= 1−ωp

2/ω2. The driving source is TM electromagnetic waves with the
polarization direction perpendicular to the grating strip.

Fig. 1. (a) The schematic of the proposed structure, and (b) the principle of the excitation
of GMR-GSPP modes.

Graphene is considered as a surface conductive sheet with zero thickness in numerical
calculations, and its conductivity can be expressed as the sum of the intraband term σintra and
the interband term σinter. Nevertheless, due to the Pauli blocking, the interband term can be
neglected at terahertz frequencies on account of the photon energy -hω�2EF, where EF is the
Fermi energy. The conductivity of graphene is well expressed by the Drude-like model [31,32]

σ =
ie2kBT

π~2(ω + 2i
τ )

ln
[
exp

(
−

EF

2kBT

)
+ exp

(
EF

2kBT

)]
(2)

where τ is the relaxation time, e is the electron charge, T is the temperature in Kelvin, -h is the
reduced Planck constant, and kB is the Boltzmann constant.
The excitation of GMRs in the grating-waveguide structure is firstly explored. Since the

metallic grating will introduce an additional phase, a very low grating duty cycle of 10% is
selected to diminish the effects of grating on the GMRs. A TM electromagnetic wave with the
polarization perpendicular to the metallic strip is used as the driving source. When the incident
light impinges on the grating, at some frequencies, if the in-plane-wavevector-frequency relations
of diffraction modes satisfy the dispersion relations of GMRs, the GMRs will be launched. As
shown in Fig. 2(a), the reflection spectrum of the grating-waveguide structure is computed with
the Lumerical FDTD package. Floquet periodic boundary conditions are used on the left and
right sides of the computational domain, and two perfect match layers are added to absorb the
transmission and reflection waves. The broad periodic reflection peak-dip structure is due to
the Fabry-Perot interference. A series of sharp Fano-shaped features are superimposed on the
peak-dip structure, which correspond to the launch of GMRs. In order to further identify these
sharp Fano-shaped reflection features, the dispersion relation of GMR is numerically calculated.
Without considering the effects of grating, the transcendental equation for the dispersion relations
of GMR are,

tan(κd) =
n21κ

2(n23γ + n
2
2δ)

n22n
2
3κ

2 − n41γδ
(3)

κ = (n21k
2 − β2)

1
2 (4)
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γ = (β2 − n22k
2)

1
2 (5)

δ = (β2 − n23k
2)

1
2 (6)

where d and n1 are the thickness and the refractive constant of the slab dielectric waveguide,
respectively. n2 (n3) is the refractive constant of above (below) environment of the waveguide.
β=2πm/p is the wavevector provided by the metallic gratings with m an integer. Figure 2(b)
shows the dispersion relations for the first four order GMR modes. Comparing Figs. 2(a) and
2(b), it is obvious that the frequencies of the Fano-shaped features in Fig. 2(a) correspond to
those of the intersection points of the black solid lines (dispersion-relation curves) and the dotted
orange lines (the in-plane wavevectors provided by the grating) in Fig. 2(b). Then it can be
concluded that a GMR mode will be launched if its momentum matches with that offered by the
metallic gratings.

Fig. 2. (a) Reflection spectrum of the grating-waveguide structure, (b) the first four order
dispersion relations (solid black lines) of GMRs supported by the dielectric waveguide and
finite wavevectors (dotted orange lines) provided by the coupling grating, (c) the distributions
of electric field |Ey | for different Fano-shaped reflection features labeled as (m,n) shown in
(a) with m=1,2 and n=0,1,2, respectively.

Aided by the results shown in Fig. 2(b), the origins of the Fano-shaped features shown in
Fig. 2(a) are all well addressed. In order to further explore the characteristics of the GMRs,
the intersection points in Fig. 2(b) are labeled as (m,n) with m the diffraction mode order of
grating and n the GMR order, and the corresponding electric field distributions |Ey | are shown
in Fig. 2(c). Obviously, for the (m,n) GMR mode, the node number of |Ey | is m in x direction
and n in y direction. In addition, accompanied with the excitation of GMRs, there are strong
evanescent fields on two surfaces of the grating-waveguide structure, which is similar to the case
of prism-coupled GSPPs.

To find the phase match condition of GMR-launched GSPP, the dispersion relation of GSPP is
numerically calculated by solving the transcendental equation [6,33],

εr1√
β2(ω) − εr1k20

+
εr2√

β2(ω) − εr2k20
= −

iσ(ω)
ε0ω

(7)

where εr1(εr2) is the dielectric constant of the material above (below) the graphene layer, β(ω)
is the in-plane wavevector of GSPP, k0=2π/λ is the vacuum wavevector with λ the vacuum
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wavelength, and ε0 is the vacuum permittivity. The monolayer graphene has a metal-like response
to in-plane electric field and a dielectric-like response to the surface-normal electric field. The
dispersion relation of GSPP is different from that of other type of two-dimensional (2D) electron
gases [34], due to the massless electrons in graphene.

With a carrier relaxation time of τ=5 ps, EF=0.35 eV, and εr1=εr2=1.0, the dispersion relations
of GSPP and GMRs are first numerically calculated and plotted in Fig. 3(a). There are two
intersection points at about 2.17 THz and 3.10 THz between the dispersion curves of GSPP and
the first-order GMR. The wavevector of the first intersection point is very close to that of the
grating first-order diffraction mode, which indicates that the hybrid GMR-GSPP mode can be
effectively launched by the metallic grating.

Fig. 3. (a) Dispersion relations of GSPP and GMRs with τ=5 ps, EF=0.35 eV, (b) reflection
spectrum of the grating-waveguide structure with grating duty cycle of 50%, (c), (d) false-
color contours of reflection and absorption spectra with the gap height h in the range of
0-20 µm, (e) the energy enhancement factor spectrum in the gap with h=8 µm, black line:
averaged in the whole gap region, red line: averaged in the labeled high-field region, the
illustration is the electric field distribution |Ey |2 at 1.85 THz, where the corresponding
energy enhancement factor in the gap reaches its maximum value.

In order to study the energy enhancement in the gap between the slab dielectric waveguide and
the monolayer graphene, an energy enhancement factor γE is defined as,

γE =
|Erec |

2

|Einc |
2 (8)

where Erec is the volume-averaged field in the rectangle region, and Einc is the area-averaged
incident field. To further explore the behaviors of the hybrid GMR-GSPP mode, the dependences
of reflection spectrum, electric field distribution, and the energy enhancement factor on the gap
height h (the distance between the bottom surface of the waveguide and the monolayer graphene)
are systemically investigated. The duty cycle of the metallic grating is set to 50% for improving
the coupling efficiency, and the other parameters are same with the case shown in Fig. 2(a). Due
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to the influence of metallic grating with finite duty cycle, as shown in Fig. 3(b), there are obvious
differences between 10% and 50% duty cycles in terms of resonant frequencies and dip widths of
the reflection features. In the frequency range of 1.3-2.2 THz, there are three reflection dips at
1.48 THz, 1.75 THz, and 2.17 THz, respectively. When the monolayer graphene is introduced,
a new reflection dip corresponding to the excitation of GSPP appears for the gap width h>2.0
µm (Fig. 3(c)). Because the gap width is in deep subwavelength scale, the grating-waveguide
structure can be seen by the GSPP. Therefore, the dielectric constant εr2 below the graphene
layer in Eq. (4) must be replaced by an effective dielectric constant εeff . It has been shown in
Refs. [7,35–36] that the value of εeff decreases with increasing the gap width, which leads to
the blue shift of GSPP at the same wavevector (Fig. 3(c)). Therefore, the intersection points
between the dispersion curves of GMR and GSPP modes can be tuned by changing the gap width.
Meanwhile, due to the strong interaction between GSPP and GMR modes via near-field coupling,
there are three anti-crossing regions, which indicates that the hybrid GMR-GSPP modes are
launched in the anti-crossing regions.
The false-color contour of absorption spectrum with the gap width of 0-20 µm is shown in

Fig. 3(d), which is directly related to the electric field intensity near the graphene layer because the
monolayer graphene is the only lossy material in the structure. When the gap width is larger than
7 µm, a strong absorption is followed by the excitation of GSPP. The energy enhancement factor
spectra with h=8 µm are calculated and plotted in Fig. 3(e). The black dot-dash line represents
the energy enhancement factor averaged in the whole gap region, and the red solid line represents
the one averaged in the high-field region labeled by a black square in Fig. 3(e). The shapes of the
two curves are similar with each other. At 1.85 THz, the two energy enhancement factors reach
their maximum values of about 84 and 171, respectively. The electric field distribution of |Ey |2 at
1.85 THz is shown in the insertion of Fig. 3(e). The field distribution shows that the GMR-GSPP
mode is launched by the (1,1) GMR mode, which is in accordance with the numerical dispersion
relations shown in Fig. 3(a). The field energy is mostly located in the gap, which is very different
from the traditional GSPP that the field energy is symmetrically located at both sides of the
monolayer graphene. Two reasons should be responsible for such a field distribution. The first
reason is that the value of the effective refractive constant εeff is larger than that of εr1, and
the field energy tends to locate at the side having higher refractive constant. The second one is
that the field distribution is determined by the hybrid GMR-GSPP mode, which has the mixed
characteristics of GMR- and GSPP-related field distributions. Moreover, as shown in Figs. 3(c)
and 3(d), the GMR-GSPP mode is on the GSPP-like branch, which results in the GSPP-dominant
electric field distribution. The strong field enhancement in a deep subwavelength cavity is very
important to study the strong light-matter interactions and construct sensors with high sensitivity.
Based on the same principle presented in Fig. 3(a), the frequencies of GMR-GSPP modes

can be tuned by changing the Fermi energy of graphene. As the Fermi energy increases, the
dispersion relation curve of GSPP shifts to higher frequency at a fixed wavevector. By introducing
a capacitor-like structure and the monolayer graphene as an electrode, the Fermi energy can be
altered via a direct bias voltage. Figure 4 presents the false-color contours of reflection and
absorption spectra in the frequency range of 1.25-2.50 THz with the Fermi energy of 0-1 eV and a
fixed medium gap width of 5.5 µm. Similar anti-crossing behaviors between the GMR modes and
the GSPP mode appear. At EF=0.5 eV and about 2.0 THz, the largest anti-crossing gap of about
0.2 THz appears. In this anti-crossing region, the intensive absorption (Fig. 4(b)) represents the
highly efficient excitation of hybrid GMR-GSPP mode. The simulation results shown in Fig. 4
indicate that except for the gap width, Fermi energy is another important parameter to tune the
resonant frequencies and to maximize the energy enhancement factor in the gap region.
An improved optimization procedure is adopted to search the best excitation condition of

GMR-GSPP modes by solving the dispersion relation transcendental equations of GMRs and
GSPP. The 2D parameter space (EF, εeff ) is roughly swept. In consideration of calculation
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Fig. 4. The false-color contours of reflection (a) and absorption (b) spectra with Fermi
energy in the range of 0-1 eV and a fixed gap value of 5.5 µm.

precision, we do not calculate the value of εeff as a function of gap width h. Instead, when the
parameter (EF , εeff ) is determined, the gap width h is scanned. Figure 5(a) shows the optimized
dispersion relations of GMRs and GSPP at the 2D parameter point (0.5 eV, 1.375). There is a
long coincidence region between the dispersion relation curves of GSPP and the first-order GMR,
which makes the excitation condition of GMR-GSPP modes be satisfied more easily.

Fig. 5. (a) Dispersion relations of GSPP and GMRs with τ=5 ps, EF=0.5 eV, the reflection
(b) and absorption (c) spectra with the gap width in the range of 0-5 µm, (d) the energy
enhancement factor spectra in the gap with h=2.5 µm, black line: averaged in the whole
gap region, red line: averaged in the labeled high-field region, and (e) the electric field
distribution |Ey |2 at 2.85 THz, where the corresponding energy enhancement factor in the
gap reaches its maximum value.

In Figs. 5(b) and 5(c), the false-color contours of reflection and absorption spectra are depicted
with the gap width h=0-5 µm and a fixed Fermi energy EF=0.5 eV. In comparison with Fig. 3(c),
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due to a higher value of Fermi energy, the anti-crossing regions occur with smaller gap widths.
It is expected that a small gap width is beneficial for increasing the excitation efficiency of
GMR-GSPP modes and the energy enhancement factor in the gap. From Fig. 5(c), the hybrid
GMR-GSPP modes are launched at about h=2.0 µm and h=2.5 µm, and at the later gap width, a
higher energy enhancement factor should be obtained. The energy enhancement factor spectrum
with EF=0.5 eV and h=2.5 µm is calculated and shown in Fig. 5(d). At 2.85 THz, the two energy
enhancement factors reach their maximum values of 251 and 496, respectively. The related mode
field distribution |Ey |2 is shown in Fig. 5(e). The electric field energy is effectively squeezed
into the gap. The field distribution indicates the hybrid mode is launched by the (2,1) GMR
mode. The hybrid mode corresponding to the first anti-crossing region is excited by the (1,1)
GMR mode. It is noticeable that because of the influence of the metallic grating, there is a
remarkable discrepancy between the dispersion relation calculations and the full-wave FDTD
simulations to obtain the resonant frequencies of GMR-GSPP modes. However, the dispersion
relation calculations are valuable for understanding the excitation principle and determining the
approximate resonant frequencies of hybrid GMR-GSPP modes.
Due to the large difference in loss (quality factor) between the near lossless GMR and the

lossy GSPP, there is a remarkable difference between GMR-GSPP and GSPP-GMR modes. Such
a difference can be explained by using the coupled oscillator model [37]. For GSPP-GMR
hybrid modes, the driven source is directly applied to the lossy GSPP, and the near-field coupling
between the GSPP and GMR results in a sharp reflection peak located in a broad reflection dip.
The GSPP-GMR hybrid modes have been widely investigated. On the contrary, for GMR-GSPP,
the excitation process is inverse, which results in a sharp reflection dip in the high reflection
background. As far as sensing is concerned, the GMR-GSPP structure may be more robust to
measurement noise, and less electromagnetic energy is absorbed by the device.

The intrinsic relaxation time in graphene is much longer than the set value of τ=5 ps. However,
due to the existence of extrinsic scattering centers, for example, dopants in graphene, ionized
impurity and phonon in substrate, it is not an easy task to obtain a monolayer graphene with
τ=5 ps experimentally. Therefore, the effects of carrier relaxation time are explored, and the
numerical results are shown in Fig. 6. In order to demonstrate the anti-crossing behavior more
clearly, a higher value of EF=0.7 eV is selected. For τ>1 ps, Figs. 6(a) and 6(b) show that the
reflection spectra are quite similar. However, with further decreasing of τ to 0.2 ps, due to
the broadening of reflection dips, the anti-crossing region is smeared (Fig. 6(c)). As shown in
Fig. 6(d), the energy enhancement factor is much sensitive to the carrier relaxation time. The

Fig. 6. The false-color contours of reflection spectra with EF=0.7 eV and τ=5 ps (a), 1
ps (b), and 0.2 ps (c). (d) The maximum energy enhancement factor as a function of
carrier relaxation time at 1.85 THz with Fermi energy EF and gap height h as optimization
parameters.
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energy enhancement factor linearly decreases from 171 to 21 with τ decreasing from 5 to 0.2 ps,
which may be due to the decrease of coupling strength between the GMR and GSPP modes and
the enhancement of absorption in graphene.
Because it is very difficult to fabricate the free-standing monolayer graphene. The effects of

a semi-infinite substrate (benzocyclobutene, BCB, dielectric constant: 2.65) is checked. The
numerical results show that the electromagnetic energy is still located in the vacuum gap, and the
main conclusions are not influenced.

3. Conclusion

A combined structure, composed of a metallic grating on a slab dielectric waveguide structure
and a monolayer graphene with a subwavelength vacuum gap between them, is studied. Hybrid
GMR-GSPP modes can be effectively launched via an Otto-like configuration. The excitation
conditions for GMR-GSPP modes are qualitatively revealed by solving the dispersion relation
transcendental equations of GMR and GSPP. Full-wave simulations with Lumerical FDTD
package further identify the above excitation conditions. Strong interaction between the GMR and
GSPPmodes leads to the anti-crossing behavior in the reflection spectra by changing the gap width
and Fermi energy of graphene. With the excitation of hybrid GMR-GSPP modes, the incident
electromagnetic energy can be effectively funneled into the gap and a large volume-averaged
energy enhancement factor of about 500 is obtained in the gap. The proposed structure can be
used to realize highly sensitive, compatible with planar fabrication technology, and electrically
(mechanically) tunable sensors.
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